首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epigenetics is receiving growing attention in the plant science community. Epigenetic modifications are thought to play a particularly important role in fluctuating environments. It is hypothesized that epigenetics contributes to plant phenotypic plasticity because epigenetic modifications, in contrast to DNA sequence variation, are more likely to be reversible. The population of decrease in DNA methylation 1-2 (ddm1-2)-derived epigenetic recombinant inbred lines (epiRILs) in Arabidopsis thaliana is well suited for studying this hypothesis, as DNA methylation differences are maximized and DNA sequence variation is minimized. Here, we report on the extensive heritable epigenetic variation in plant growth and morphology in neutral and saline conditions detected among the epiRILs. Plant performance, in terms of branching and leaf area, was both reduced and enhanced by different quantitative trait loci (QTLs) in the ddm1-2 inherited epigenotypes. The variation in plasticity associated significantly with certain genomic regions in which the ddm1-2 inherited epigenotypes caused an increased sensitivity to environmental changes, probably due to impaired genetic regulation in the epiRILs. Many of the QTLs for morphology and plasticity overlapped, suggesting major pleiotropic effects. These findings indicate that epigenetics contributes substantially to variation in plant growth, morphology, and plasticity, especially under stress conditions.  相似文献   

3.
Deciphering the influence of genetics on primary metabolism in plants will provide insights useful for genetic improvement and enhance our fundamental understanding of plant growth and development. Although maize (Zea mays) is a major crop for food and feed worldwide, the genetic architecture of its primary metabolism is largely unknown. Here, we use high-density linkage mapping to dissect large-scale metabolic traits measured in three different tissues (leaf at seedling stage, leaf at reproductive stage, and kernel at 15 d after pollination [DAP]) of a maize recombinant inbred line population. We identify 297 quantitative trait loci (QTLs) with moderate (86.2% of the mapped QTL, R2 = 2.4 to 15%) to major effects (13.8% of the mapped QTL, R2 >15%) for 79 primary metabolites across three tissues. Pairwise epistatic interactions between these identified loci are detected for more than 25.9% metabolites explaining 6.6% of the phenotypic variance on average (ranging between 1.7 and 16.6%), which implies that epistasis may play an important role for some metabolites. Key candidate genes are highlighted and mapped to carbohydrate metabolism, the tricarboxylic acid cycle, and several important amino acid biosynthetic and catabolic pathways, with two of them being further validated using candidate gene association and expression profiling analysis. Our results reveal a metabolite-metabolite-agronomic trait network that, together with the genetic determinants of maize primary metabolism identified herein, promotes efficient utilization of metabolites in maize improvement.  相似文献   

4.
Integration of diverse environmental and endogenous signals to coordinately regulate growth, development, and defense is essential for plants to survive in their natural habitat. The hormonal signals gibberellin (GA) and jasmonate (JA) antagonistically and synergistically regulate diverse aspects of plant growth, development, and defense. GA and JA synergistically induce initiation of trichomes, which assist seed dispersal and act as barriers to protect plants against insect attack, pathogen infection, excessive water loss, and UV irradiation. However, the molecular mechanism underlying such synergism between GA and JA signaling remains unclear. In this study, we revealed a mechanism for GA and JA signaling synergy and identified a signaling complex of the GA pathway in regulation of trichome initiation. Molecular, biochemical, and genetic evidence showed that the WD-repeat/bHLH/MYB complex acts as a direct target of DELLAs in the GA pathway and that both DELLAs and JAZs interacted with the WD-repeat/bHLH/MYB complex to mediate synergism between GA and JA signaling in regulating trichome development. GA and JA induce degradation of DELLAs and JASMONATE ZIM-domain proteins to coordinately activate the WD-repeat/bHLH/MYB complex and synergistically and mutually dependently induce trichome initiation. This study provides deep insights into the molecular mechanisms for integration of different hormonal signals to synergistically regulate plant development.  相似文献   

5.
Abscisic acid (ABA) signaling plays a major role in root system development, regulating growth and root architecture. However, the precise localization of ABA remains undetermined. Here, we present a mechanism in which nitrate signaling stimulates the release of bioactive ABA from the inactive storage form, ABA-glucose ester (ABA-GE). We found that ABA accumulated in the endodermis and quiescent center of Arabidopsis thaliana root tips, mimicking the pattern of SCARECROW expression, and (to lower levels) in the vascular cylinder. Nitrate treatment increased ABA levels in root tips; this stimulation requires the activity of the endoplasmic reticulum-localized, ABA-GE-deconjugating enzyme β-GLUCOSIDASE1, but not de novo ABA biosynthesis. Immunogold labeling demonstrated that ABA is associated with cytoplasmic structures near, but not within, the endoplasmic reticulum. These findings demonstrate a mechanism for nitrate-regulated root growth via regulation of ABA accumulation in the root tip, providing insight into the environmental regulation of root growth.  相似文献   

6.
7.
8.
For crops that are grown for their fruits or seeds, elevated temperatures that occur during flowering and seed or fruit set have a stronger effect on yield than high temperatures during the vegetative stage. Even short-term exposure to heat can have a large impact on yield. In this study, we used Arabidopsis thaliana to study the effect of short-term heat exposure on flower and seed development. The impact of a single hot day (35°C) was determined in more than 250 natural accessions by measuring the lengths of the siliques along the main inflorescence. Two sensitive developmental stages were identified, one before anthesis, during male and female meiosis, and one after anthesis, during fertilization and early embryo development. In addition, we observed a correlation between flowering time and heat tolerance. Genome-wide association mapping revealed four quantitative trait loci (QTLs) strongly associated with the heat response. These QTLs were developmental stage specific, as different QTLs were detected before and after anthesis. For a number of QTLs, T-DNA insertion knockout lines could validate assigned candidate genes. Our findings show that the regulation of complex traits can be highly dependent on the developmental timing.  相似文献   

9.
Root architecture is a highly plastic and environmentally responsive trait that enables plants to counteract nutrient scarcities with different foraging strategies. In potassium (K) deficiency (low K), seedlings of the Arabidopsis (Arabidopsis thaliana) reference accession Columbia (Col-0) show a strong reduction of lateral root elongation. To date, it is not clear whether this is a direct consequence of the lack of K as an osmoticum or a triggered response to maintain the growth of other organs under limiting conditions. In this study, we made use of natural variation within Arabidopsis to look for novel root architectural responses to low K. A comprehensive set of 14 differentially responding root parameters were quantified in K-starved and K-replete plants. We identified a phenotypic gradient that links two extreme strategies of morphological adaptation to low K arising from a major tradeoff between main root (MR) and lateral root elongation. Accessions adopting strategy I (e.g. Col-0) maintained MR growth but compromised lateral root elongation, whereas strategy II genotypes (e.g. Catania-1) arrested MR elongation in favor of lateral branching. K resupply and histochemical staining resolved the temporal and spatial patterns of these responses. Quantitative trait locus analysis of K-dependent root architectures within a Col-0 × Catania-1 recombinant inbred line population identified several loci each of which determined a particular subset of root architectural parameters. Our results indicate the existence of genomic hubs in the coordinated control of root growth in stress conditions and provide resources to facilitate the identification of the underlying genes.The ability of plants to actively respond to nutrient scarcity with changes in root architecture is a fascinating phenomenon. Advances in root research and breeding efforts that focus on the enhancement of root traits have been recognized as principal goals to ensure those high yields necessary to feed an ever-growing human population (Hammer et al., 2009; Den Herder et al., 2010). Indeed, understanding the adaptations of root systems to environmental factors has been pointed out as a key issue in modern agriculture (Den Herder et al., 2010).Potassium (K) is the quantitatively most important cation for plant growth, as it serves as the major osmoticum for cell expansion (Leigh and Wyn Jones, 1984; Amtmann et al., 2006). Moreover, K is essential for many cellular and tissue processes, such as enzymatic activity, transport of minerals and metabolites, and regulation of stomatal aperture (Amtmann et al., 2006). Even in fertilized fields, rapid K uptake by plants can lead to K shortage in the root environment, especially early in the growth season. Root adaptations to K deficiency (low K) take place at the physiological (Armengaud et al., 2004; Shin and Schachtman, 2004; Alemán et al., 2011), metabolic (Armengaud et al., 2009a), and morphological levels. In a classic study, Drew (1975) showed an increase in overall lateral root (LR) growth of barley seedlings, even when K was supplied only to parts of the root system. Conversely, a typical response of Arabidopsis (Arabidopsis thaliana) Columbia (Col-0) seedlings to low K is the drastic reduction of LR elongation (Armengaud et al., 2004; Shin and Schachtman, 2004). Conflicting data have been published on the effect of low K on main root (MR) growth in the same species, ranging from no effect (Shin and Schachtman, 2004) to impaired MR elongation (Jung et al., 2009; Kim et al., 2010). Some components involved in K starvation responses have been identified, such as jasmonates (Armengaud et al., 2004, 2010), reactive oxygen species (Shin and Schachtman, 2004), and ethylene (Jung et al., 2009). However, the molecular identity of a root K sensor acting at the base of the signaling cascade is so far unknown.Genetic variation within species is a useful resource to dissect the genetic components determining phenotypes (Koornneef et al., 2004; Trontin et al., 2011; Weigel, 2012). Natural variation within Arabidopsis has been the basis for many studies on plant morphology, physiology, and development as well as stress response (Alonso-Blanco et al., 2009; Weigel, 2012). Natural variation of root traits such as primary root length (Mouchel et al., 2004; Loudet et al., 2005; Sergeeva et al., 2006), LR length (Loudet et al., 2005), and total root size (Fitz Gerald et al., 2006) have pinpointed genomic regions underlying the phenotypic variation via mapping of quantitative trait loci (QTLs) as a first step toward the identification of novel regulatory genes (Mouchel et al., 2004). This strategy has also been applied to environmental responses, such as growth responses to phosphate starvation (Reymond et al., 2006; Svistoonoff et al., 2007). However, despite their importance for plant growth and their strong effect on overall root architecture, root responses to K deficiency have not been genetically dissected.Here, we show that Arabidopsis accessions follow different strategies to adapt to K starvation. We present the quantification of a comprehensive set of root architectural parameters of Arabidopsis grown in K-sufficient and K-deficient media and the identification of genetic loci, each of which determines the response of a distinct subset of root architectural parameters to K starvation.  相似文献   

10.
Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.  相似文献   

11.
12.
13.
14.
The quest to determine the genetic basis of root system architecture (RSA) has been greatly facilitated by recent developments in root phenotyping techniques. Methods that are accurate, high throughput, and control for environmental factors are especially attractive for quantitative trait locus mapping. Here, we describe the adaptation of a nondestructive in vivo gel-based root imaging platform for use in maize (Zea mays). We identify a large number of contrasting RSA traits among 25 founder lines of the maize nested association mapping population and locate 102 quantitative trait loci using the B73 (compact RSA) × Ki3 (exploratory RSA) mapping population. Our results suggest that a phenotypic tradeoff exists between small, compact RSA and large, exploratory RSA.Maize (Zea mays) serves a key role in food, feedstock, and biofuel production throughout the world. To date, maize improvement through breeding has kept pace with the increasing demand for this crop (faostat3.fao.org). This feat has been accomplished through the utilization of the tremendous genetic diversity in maize (Flint-Garcia et al., 2005; Jiao et al., 2012), but increasing environmental pressures and a growing global population will require unprecedented gains in yield in the coming years. In the last decade, researchers have begun to explore the possibility of yield improvements through the manipulation of root systems, for example through breeding for roots better able to cope with drought (Uga et al., 2013) and flooding (Jackson and Armstrong, 1999), the use of plant growth-promoting rhizobacteria (Silby et al., 2009), or increasing nutrient use efficiency (Garnett et al., 2009). The potential of belowground solutions to enhanced plant productivity has driven the development of numerous methodologies for phenotyping root system architecture (RSA), which is the spatial organization of the plant’s root system.Several methods ranging from techniques adapted from medical imaging, such as x-ray tomography (Hargreaves et al., 2008) and combined positron emission tomography-magnetic resonance imaging (Jahnke et al., 2009), to refined versions of classical methods, such as field excavations (Trachsel et al., 2010) and pouch systems (Le Marié et al., 2014), have been used in attempts to understand the phenotypic consequences of genetic and environmental variation on root traits. Each root-phenotyping method has its advantages and disadvantages. Although the medical imaging-based techniques can produce highly detailed representations of roots, they are also very time consuming and require specialized equipment. Excavations, although more easily scaled to higher throughput and not requiring special equipment, are destructive and offer only coarse measurements of RSA. An alternative method for root phenotyping based on an optically clear gel substrate strikes an effective balance between throughput and detail, using a simple digital camera while maintaining precise control over environmental conditions. This platform has been used to quantify and classify distinctive root architectures from 12 rice (Oryza sativa) genotypes (Iyer-Pascuzzi et al., 2010), conduct a quantitative trait locus (QTL) mapping study of rice root traits in three dimensions (Topp et al., 2013), study interspecific and intraspecific rice root interactions (Fang et al., 2013), and quantify contributions of different root types to overall RSA (Clark et al., 2011).Here, we describe the adaptation of this gel imaging platform for use with the large maize root system. We used the platform to quantify the phenotypic diversity of RSA among 25 of the 26 nested association mapping (NAM) founder lines, which encompass a wide spectrum of maize genetic diversity (Yu et al., 2008; McMullen et al., 2009). We found that these lines exhibit diverse RSAs, ranging from small and compact to large and exploratory, suggesting tradeoffs between different types of architectures. In order to identify genetic loci that control maize RSA traits, we characterized a subpopulation that best represented the contrast between the compact and exploratory RSAs. We phenotyped the B73 (compact) × Ki3 (exploratory) recombinant inbred line (RIL) NAM subpopulation for 19 RSA traits at three time points (Topp et al., 2013). These data were used to map 102 QTLs that localized to nine genomic clusters. We found high heritability and large-effect QTLs for most traits, in contrast to maize flowering time QTLs (Buckler et al., 2009). Additionally, several of our QTL clusters overlapped with meta-QTLs for yield traits (Tuberosa et al., 2003; Semagn et al., 2013) as well as novel and previously unreported loci, suggesting that this system can provide a time- and cost-effective means to identify genes controlling root architecture in maize.  相似文献   

15.
16.
Phytohormones play an important role in development and stress adaptations in plants, and several interacting hormonal pathways have been suggested to accomplish fine-tuning of stress responses at the expense of growth. This work describes the role played by the CALCIUM-DEPENDENT PROTEIN KINASE CPK28 in balancing phytohormone-mediated development in Arabidopsis thaliana, specifically during generative growth. cpk28 mutants exhibit growth reduction solely as adult plants, coinciding with altered balance of the phytohormones jasmonic acid (JA) and gibberellic acid (GA). JA-dependent gene expression and the levels of several JA metabolites were elevated in a growth phase-dependent manner in cpk28, and accumulation of JA metabolites was confined locally to the central rosette tissue. No elevated resistance toward herbivores or necrotrophic pathogens was detected for cpk28 plants, either on the whole-plant level or specifically within the tissue displaying elevated JA levels. Abolishment of JA biosynthesis or JA signaling led to a full reversion of the cpk28 growth phenotype, while modification of GA signaling did not. Our data identify CPK28 as a growth phase-dependent key negative regulator of distinct processes: While in seedlings, CPK28 regulates reactive oxygen species-mediated defense signaling; in adult plants, CPK28 confers developmental processes by the tissue-specific balance of JA and GA without affecting JA-mediated defense responses.  相似文献   

17.
The unfolded protein response (UPR) is a conserved eukaryotic signaling pathway regulating endoplasmic reticulum (ER) homeostasis during ER stress, which results, for example, from an increased demand for protein secretion. Here, we characterize the homologs of the central UPR regulatory proteins Hac1 (for Homologous to ATF/CREB1) and Inositol Requiring Enzyme1 in the plant pathogenic fungus Ustilago maydis and demonstrate that the UPR is tightly interlinked with the b mating-type-dependent signaling pathway that regulates pathogenic development. Exact timing of UPR is required for virulence, since premature activation interferes with the b-dependent switch from budding to filamentous growth. In addition, we found crosstalk between UPR and the b target Clampless1 (Clp1), which is essential for cell cycle release and proliferation in planta. The unusual C-terminal extension of the U. maydis Hac1 homolog, Cib1 (for Clp1 interacting bZIP1), mediates direct interaction with Clp1. The interaction between Clp1 and Cib1 promotes stabilization of Clp1, resulting in enhanced ER stress tolerance that prevents deleterious UPR hyperactivation. Thus, the interaction between Cib1 and Clp1 constitutes a checkpoint to time developmental progression and increased secretion of effector proteins at the onset of biotrophic development. Crosstalk between UPR and the b mating-type regulated developmental program adapts ER homeostasis to the changing demands during biotrophy.  相似文献   

18.
Stresses decouple nitrate assimilation and photosynthesis through stress-initiated nitrate allocation to roots (SINAR), which is mediated by the nitrate transporters NRT1.8 and NRT1.5 and functions to promote stress tolerance. However, how SINAR communicates with the environment remains unknown. Here, we present biochemical and genetic evidence demonstrating that in Arabidopsis thaliana, ethylene (ET) and jasmonic acid (JA) affect the crosstalk between SINAR and the environment. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that ethylene response factors (ERFs), including OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59, bind to the GCC boxes in the NRT1.8 promoter region, while ETHYLENE INSENSITIVE3 (EIN3) binds to the EIN3 binding site motifs in the NRT1.5 promoter. Genetic assays showed that cadmium and sodium stresses initiated ET/JA signaling, which converged at EIN3/EIN3-Like1 (EIL1) to modulate ERF expression and hence to upregulate NRT1.8. By contrast, ET and JA signaling mediated the downregulation of NRT1.5 via EIN3/EIL1 and other, unknown component(s). SINAR enhanced stress tolerance and decreased plant growth under nonstressed conditions through the ET/JA-NRT1.5/NRT1.8 signaling module. Interestingly, when nitrate reductase was impaired, SINAR failed to affect either stress tolerance or plant growth. These data suggest that SINAR responds to environmental conditions through the ET/JA-NRT signaling module, which further modulates stress tolerance and plant growth in a nitrate reductase-dependent manner.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号