首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiotrophin-1 (CT-1) is a cytokine with antiobesity properties and with a role in lipid metabolism regulation and adipose tissue function. The aim of this study was to analyze the molecular mechanisms involved in the lipolytic actions of CT-1 in adipocytes. Recombinant CT-1 (rCT-1) effects on the main proteins and signaling pathways involved in the regulation of lipolysis were evaluated in 3T3-L1 adipocytes and in mice. rCT-1 treatment stimulated basal glycerol release in a concentration- and time-dependent manner in 3T3-L1 adipocytes. rCT-1 (20 ng/ml for 24 h) raised cAMP levels, and in parallel increased protein kinase (PK)A-mediated phosphorylation of perilipin and hormone sensitive lipase (HSL) at Ser660. siRNA knock-down of HSL or PKA, as well as pretreatment with the PKA inhibitor H89, blunted the CT-1-induced lipolysis, suggesting that the lipolytic action of CT-1 in adipocytes is mainly mediated by activation of HSL through the PKA pathway. In ob/ob mice, acute rCT-1 treatment also promoted PKA-mediated phosphorylation of perilipin and HSL at Ser660 and Ser563, and increased adipose triglyceride lipase (desnutrin) content in adipose tissue. These results showed that the ability of CT-1 to regulate the activity of the main lipases underlies the lipolytic action of this cytokine in vitro and in vivo, and could contribute to CT-1 antiobesity effects.  相似文献   

2.
Our previous studies have demonstrated that natriuretic peptides (NPs), peptide hormones with natriuretic, diuretic, and vasodilating properties, exert a potent control on the lipolysis in human adipocytes via the activation of the type A guanylyl cyclase receptor (1, 2). In the current study we investigated the intracellular mechanisms involved in the NP-stimulated lipolytic effect in human preadipocytes and adipocytes. We demonstrate that the atrial NP (ANP)-induced lipolysis in human adipocytes was associated with an enhanced serine phosphorylation of the hormone-sensitive lipase (HSL). Both ANP-mediated lipolysis and HSL phosphorylation were inhibited in the presence of increasing concentrations of the guanylyl cyclase inhibitor LY-83583. ANP did not modulate the activity of the cAMP-dependent protein kinase (PKA). Moreover, H-89, a PKA inhibitor, did not affect the ANP-induced lipolysis. On primary cultures of human preadipocytes, the ANP-mediated lipolytic effect was dependent on the differentiation process. On differentiated human preadipocytes, ANP-mediated lipolysis, associated with an increased phosphorylation of HSL and of perilipin A, was strongly decreased by treatment with the inhibitor of the cGMP-dependent protein kinase I (cGKI), Rp-8-pCPT-cGMPS. Thus, ANP-induced lipolysis in human adipocytes is a cGMP-dependent pathway that induces the phosphorylation of HSL and perilipin A via the activation of cGKI. The present study shows that lipolysis in human adipocytes can be controlled by an independent cGKI-mediated signaling as well as by the classical cAMP/PKA pathway.  相似文献   

3.
The aims of the present study were to examine the effect of magnolol on lipolysis in sterol ester (SE)-loaded 3T3-L1 preadipocytes and to determine the signaling mechanism involved. We demonstrate that magnolol treatment resulted in a decreased number and surface area of lipid droplets, accompanied by release of glycerol. The lipolytic effect of magnolol was not mediated by PKA based on the facts that magnolol did not induce an elevation of intracellular cAMP levels, and protein kinase A (PKA) inhibitor KT5720 did not block magnolol-induced lipolysis. Calcium/calmodulin-dependent protein kinase (CaMK) was involved in this signaling pathway, since magnolol-induced a transient rise of intracellular [Ca(2+)] and Ca(2+) influx across the plasma membrane, and CaMK inhibitor significantly abolished magnolol-induced lipolysis. Moreover, magnolol increased the relative levels of phosphorylated extracellular signal-related kinases (ERK1 and ERK2). In support of the involvement ERK, we demonstrated that magnolol-induced lipolysis was inhibited by PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK), and PD98059 reversed magnolol-induced ERK phosphorylation. Further, the relationship between CaMK and ERK was connected by the finding that CaMK inhibitor also blocked magnolol-induced ERK phosphorylation. Taken together, these findings suggest that magnolol-induced lipolysis is both CaMK- and ERK-dependent, and this lipolysis signaling pathway is distinct from the traditional PKA pathway. ERK phosphorylation is reported to enhance lipolysis by direct activation of hormone sensitive lipase (HSL), thus magnolol may likely activate HSL through ERK and increase lipolysis of adipocytes.  相似文献   

4.
Adipose tissue is a critical exchange center for complex energy transactions involving triacylglycerol storage and release. It also has an active endocrine role, releasing various adipose-derived cytokines (adipokines) that participate in complex pathways to maintain metabolic and vascular health. Here, we found D-dopachrome tautomerase (DDT) as an adipokine secreted from human adipocytes by a proteomic approach. DDT mRNA levels in human adipocytes were negatively correlated with obesity-related clinical parameters such as BMI, and visceral and subcutaneous fat areas. Experiments using SGBS cells, a human preadipocyte cell line, revealed that DDT mRNA levels were increased in an adipocyte differentiation-dependent manner and DDT was secreted from adipocytes. In DDT knockdown adipocytes differentiated from SGBS cells that were infected with the adenovirus expressing shRNA against the DDT gene, mRNA levels of genes involved in both lipolysis and lipogenesis were slightly but significantly increased. Furthermore, we investigated AMP-activated protein kinase (AMPK) signaling, which phosphorylates and inactivates enzymes involved in lipid metabolism, including hormone-sensitive lipase (HSL) and acetyl-CoA carboxylase (ACC), in DDT knockdown adipocytes. The AMPK phosphorylation of HSL Ser-565 and ACC Ser-79 was inhibited in DDT knockdown cells and recovered in the cells treated with recombinant DDT (rDDT), suggesting that down-regulated DDT in adipocytes brings about a state of active lipid metabolism. Furthermore, administration of rDDT in db/db mice improved glucose intolerance and decreased serum free fatty acids levels. In the adipose tissue from rDDT-treated db/db mice, not only increased levels of HSL phosphorylated by AMPK, but also decreased levels of HSL phosphorylated by protein kinase A (PKA), which phosphorylates HSL to promote its activity, were observed. These results suggested that DDT acts on adipocytes to regulate lipid metabolism through AMPK and/or PKA pathway(s) and improves glucose intolerance caused by obesity.  相似文献   

5.
In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues.  相似文献   

6.
Berberine, a hypoglycemic agent, has been shown to decrease plasma free fatty acids (FFAs) level in insulin-resistant rats. In the present study, we explored the mechanism responsible for the antilipolytic effect of berberine in 3T3-L1 adipocytes. It was shown that berberine attenuated lipolysis induced by catecholamines, cAMP-raising agents, and a hydrolyzable cAMP analog, but not by tumor necrosis factor α and a nonhydrolyzable cAMP analog. Unlike insulin, the inhibitory effect of berberine on lipolysis in response to isoproterenol was not abrogated by wortmannin, an inhibitor of phosphatidylinositol 3-kinase, but additive to that of PD98059, an extracellular signal-regulated kinase kinase inhibitor. Prior exposure of adipocytes to berberine decreased the intracellular cAMP production induced by isoproterenol, forskolin, and 3-isobutyl-1-methylxanthine (IBMX), along with hormone-sensitive lipase (HSL) Ser-563 and Ser-660 dephosphorylation, but had no effect on perilipin phosphorylation. Berberine stimulated HSL Ser-565 as well as adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. However, compound C, an AMPK inhibitor, did not reverse the regulatory effect of berberine on HSL Ser-563, Ser-660, and Ser-565 phosphorylation, nor the antilipolytic effect of berberine. Knockdown of AMPK using RNA interference also failed to restore berberine-suppressed lipolysis. cAMP-raising agents increased AMPK activity, which was not additive to that of berberine. Stimulation of adipocytes with berberine increased phosphodiesterase (PDE) 3B and PDE4 activity measured by hydrolysis of 3[H]cAMP. These results suggest that berberine exerts an antilipolytic effect mainly by reducing the inhibition of PDE, leading to a decrease in cAMP and HSL phosphorylation independent of AMPK pathway.  相似文献   

7.
Hyperhomocysteinemia (HHcy) is an independent risk factor for coronary artery disease. Emerging evidence suggests that HHcy is also associated with adipocyte tissue dysfunction. One of the principal functions of adipose tissue is to provide energy substrate via lipolysis. In the present study, we investigated the effects of homocysteine (Hcy) on lipolysis in adipocytes. We found that Hcy inhibited release of glycerol and fatty acids, two typical indicators of the lipolytic response, in primary adipocytes and fully differentiated 3T3-L1 adipocytes in a dose-dependent manner under both basal and isoproterenol-stimulated conditions. In differentiated 3T3-L1 adipocytes, decreased glycerol and free fatty acid (FFA) release was associated with elevation of intracellular TG content. Further studies showed that Hcy-mediated antilipolytic responses were independent of the cyclic AMP-PKA and MEK-ERK1/2 pathways. However, Hcy increased phosphorylation levels of AMP-activated protein kinase (AMPK) and its downstream enzyme acetyl-CoA carboxylase. Compound C, an AMPK inhibitor, abolished Hcy-induced reduction of glycerol and FFA release under both basal and isoproterenol-stimulated conditions. Furthermore, AMPKα1 siRNA reversed Hcy-inhibited glycerol release. Supplementation of exogenous Hcy in the diet for 2 wk lowered circulating glycerol and FFA levels. Moreover, Hcy supplementation was associated with elevated leptin levels and reduced adiponectin levels in plasma. These results show that Hcy inhibits lipolysis through a pathway that involves AMPK activation.  相似文献   

8.
The mobilization of metabolic energy from adipocytes depends on a tightly regulated balance between hydrolysis and resynthesis of triacylglycerides (TAGs). Hydrolysis is stimulated by β‐adrenergic signalling to PKA that mediates phosphorylation of lipolytic enzymes, including hormone‐sensitive lipase (HSL). TAG resynthesis is associated with high‐energy consumption, which when inordinate, leads to increased AMPK activity that acts to restrain hydrolysis of TAGs by inhibiting PKA‐mediated activation of HSL. Here, we report that in primary mouse adipocytes, PKA associates with and phosphorylates AMPKα1 at Ser‐173 to impede threonine (Thr‐172) phosphorylation and thus activation of AMPKα1 by LKB1 in response to lipolytic signals. Activation of AMPKα1 by LKB1 is also blocked by PKA‐mediated phosphorylation of AMPKα1 in vitro. Functional analysis of an AMPKα1 species carrying a non‐phosphorylatable mutation at Ser‐173 revealed a critical function of this phosphorylation for efficient release of free fatty acids and glycerol in response to PKA‐activating signals. These results suggest a new mechanism of negative regulation of AMPK activity by PKA that is important for converting a lipolytic signal into an effective lipolytic response.  相似文献   

9.
Signalling mechanisms regulating lipolysis   总被引:2,自引:0,他引:2  
Adipose tissue plays an important role providing energy to other tissues and functioning as an energy reserve organ. The energy supply is produced by triglycerides stored in a large vacuole representing approximately 95% of adipocyte volume. In the fasting period, triglyceride hydrolysis produces glycerol and free fatty acids which are important oxidative fuels for other tissues such as liver, skeletal muscle, kidney and myocardium. Hormone-sensitive lipase (HSL) is the enzyme that hydrolyzes intracellular triacylglycerol and diacylglycerol, and is one of the key molecules controlling lipolysis. Hormones and physiological factors such as dieting, physical exercise and ageing regulate intensively the release of glycerol and free fatty acids from adipocytes. One of the best known mechanisms that activate lipolysis in the adipocyte is the cAMP dependent pathway. cAMP production is modulated by hormone receptors coupled to Gs/Gi family of GTP binding proteins, such as beta-adrenergic receptors, whereas cAMP degradation is controlled by modulation of phosphodiesterase activity, increased by insulin receptor signalling. cAMP activates PKA which activates HSL by promoting its phosphorylation. Hormonal control of lipolysis can also be achieved by receptors coupled G proteins of the Gq family, through molecular mechanisms that involve PKC and MAPK, which are currently under investigation. cGMP and PKG have also been found to activate lipolysis in adipocytes. In this review we have compiled data from literature reporting both the classical and the alternative mechanisms of lipolysis.  相似文献   

10.
Chaves VE  Frasson D  Kawashita NH 《Biochimie》2011,93(10):1631-1640
Adipose tissue is the only tissue capable of hydrolyzing its stores of triacylglycerol (TAG) and of mobilizing fatty acids and glycerol in the bloodstream so that they can be used by other tissues. The full hydrolysis of TAG depends on the activity of three enzymes, adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase, each of which possesses a distinct regulatory mechanism. Although more is known about HSL than about the other two enzymes, it has recently been shown that HLS and ATGL can be activated simultaneously, such that the mechanism that enables HSL to access the surface of lipid droplets also permits the stimulation of ATGL. The classical pathway of lipolysis activation in adipocytes is cAMP-dependent. The production of cAMP is modulated by G-protein-coupled receptors of the Gs/Gi family and cAMP degradation is regulated by phosphodiesterase. However, other pathways that activate TAG hydrolysis are currently under investigation. Lipolysis can also be started by G-protein-coupled receptors of the Gq family, through molecular mechanisms that involve phospholipase C, calmodulin and protein kinase C. There is also evidence that increased lipolytic activity in adipocytes occurs after stimulation of the mitogen-activated protein kinase pathway or after cGMP accumulation and activation of protein kinase G. Several agents contribute to the control of lipolysis in adipocytes by modulating the activity of HSL and ATGL. In this review, we have summarized the signalling pathways activated by several agents involved in the regulation of TAG hydrolysis in adipocytes.  相似文献   

11.
High fat diet-induced endotoxaemia triggers low-grade inflammation and lipid release from adipose tissue. This study aims to unravel the cellular mechanisms leading to the lipopolysaccharide (LPS) effects in human adipocytes. Subcutaneous pre-adipocytes surgically isolated from patients were differentiated into mature adipocytes in vitro. Lipolysis was assessed by measurement of glycerol release and mRNA expression of pro-inflammatory cytokines were evaluated by real-time PCR. Treatment with LPS for 24 h induced a dose-dependent increase in interleukin (IL)-6 and IL-8 mRNA expression. At 1 μg/ml LPS, IL-6 and IL-8 were induced to 19.5 ± 1.8-fold and 662.7 ± 91.5-fold (P < 0.01 vs basal), respectively. From 100 ng/ml to 1 μg/ml, LPS-induced lipolysis increased to a plateau of 3.1-fold above basal level (P < 0.001 vs basal). Co-treatment with inhibitors of inhibitory kappa B kinase kinase beta (IKKβ) or NF-κB inhibited LPS-induced glycerol release. Co-treatment with the protein kinase A (PKA) inhibitor H-89, the lipase inhibitor orlistat or the hormone-sensitive lipase (HSL) inhibitor CAY10499 abolished the lipolytic effects of LPS. Co-treatment with the MAPK inhibitor, U0126 also reduced LPS-induced glycerol release. Inhibition of lipolysis by orlistat or CAY10499 reduced LPS-induced IL-6 and IL-8 mRNA expression. Induction of lipolysis by the synthetic catecholamine isoproterenol or the phosphodiesterase type III inhibitor milrinone did not alter basal IL-6 and IL-8 mRNA expression after 24 treatments whereas these compounds enhanced LPS-induced IL-6 and IL-8 mRNA expression. Both the inflammatory IKKβ/NF-κB pathway and the lipolytic PKA/HSL pathways mediate LPS-induced lipolysis. In turn, LPS-induced lipolysis reinforces the expression of pro-inflammatory cytokines and, thereby, triggers its own lipolytic activity.  相似文献   

12.
AMP-activated protein kinase (AMPK) is an important regulator of cellular energy status. In adipocytes, stimuli that increase intracellular cyclic AMP (cAMP) have also been shown to increase the activity of AMPK. The precise molecular mechanisms responsible for cAMP-induced AMPK activation are not clear. Phosphodiesterase 3B (PDE3B) is a critical regulator of cAMP signaling in adipocytes. Here we investigated the roles of PDE3B, PDE4, protein kinase B (PKB) and the exchange protein activated by cAMP 1 (Epac1), as well as lipolysis, in the regulation of AMPK in primary rat adipocytes. We demonstrate that the increase in phosphorylation of AMPK at T172 induced by the adrenergic agonist isoproterenol can be diminished by co-incubation with insulin. The diminishing effect of insulin on AMPK activation was reversed upon treatment with the PDE3B specific inhibitor OPC3911 but not with the PDE4 inhibitor Rolipram. Adenovirus-mediated overexpression of PDE3B and constitutively active PKB both resulted in greatly reduced isoproterenol-induced phosphorylation of AMPK at T172. Co-incubation of adipocytes with isoproterenol and the PKA inhibitor H89 resulted in a total ablation of lipolysis and a reduction in AMPK phosphorylation/activation. Stimulation of adipocytes with the Epac1 agonist 8-pCPT-2′O-Me-cAMP led to increased phosphorylation of AMPK at T172. The general lipase inhibitor Orlistat decreased isoproterenol-induced phosphorylation of AMPK at T172. This decrease corresponded to a reduction of lipolysis from adipocytes. Taken together, these data suggest that PDE3B and PDE4 regulate cAMP pools that affect the activation/phosphorylation state of AMPK and that the effects of cyclic AMP on AMPK involve Epac1, PKA and lipolysis.  相似文献   

13.
Melanocortins, besides their central roles, have also recently been reported to regulate adipocyte metabolism. In this study, we attempted to characterize the mechanism underlying alpha-melanocyte-stimulating hormone (MSH)-induced lipolysis, and compared it with that of the adrenocorticotrophin hormone (ACTH) in 3T3-L1 adipocytes. Similar to ACTH, MSH treatment resulted in the release of glycerol into the cell supernatant. The activity of hormone-sensitive lipase, a rate-limiting enzyme, which is involved in lipolysis, was significantly increased by MSH treatment. In addition, a variety of kinases, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) were also phosphorylated as the result of MSH treatment, and their specific inhibitors caused a reduction in MSH-induced glycerol release and HSL activity, indicating that MSH-induced lipolysis was mediated by these kinases. These results suggest that PKA and ERK constitute the principal signaling pathways implicated in the MSH-induced lipolytic process via the regulation of HSL in 3T3-L1 adipocytes.  相似文献   

14.
ABSTRACT

Activation of the adipose lipolytic pathway during lipid metabolism is mediated by protein kinase A (PKA), which responds to β-adrenergic stimulation, leading to increased lipolysis. Soy is well known as a functional food and it is able to affect lipolysis in adipocytes. However, the mechanism by which soy components contribute to the lipolytic pathway remains to be fully elucidated. Here, we show that hydrolyzed soy enhances isoproterenol-stimulated lipolysis and activation of PKA in 3T3-L1 adipocytes. We also found that the expression of β-adrenergic receptors, which coordinate the activation of PKA, is elevated in adipocytes differentiated in the presence of soy hydrolysate. The activity of the soy hydrolysate towards β-adrenergic receptor expression was detected in its hydrophilic fraction. Our results suggest that the soy hydrolysate enhances the PKA pathway through the upregulation of β-adrenergic receptor expression and thereby, increase lipolysis in adipocytes.  相似文献   

15.
Obesity is associated with inflammation that can drive metabolic defects such as hyperlipidemia and insulin resistance. Specific metabolites can contribute to inflammation, but nutrient intake and obesity are also associated with altered bacterial load in metabolic tissues (i.e. metabolic endotoxemia). These bacterial cues can contribute to obesity-induced inflammation. The specific bacterial components and host receptors that underpin altered metabolic responses are emerging. We previously showed that Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) activation with bacterial peptidoglycan (PGN) caused insulin resistance in mice. We now show that PGN induces cell-autonomous lipolysis in adipocytes via NOD1. Specific bacterial PGN motifs stimulated lipolysis in white adipose tissue (WAT) explants from WT, but not NOD1−/− mice. NOD1-activating PGN stimulated mitogen activated protein kinases (MAPK),protein kinase A (PKA), and NF-κB in 3T3-L1 adipocytes. The NOD1-mediated lipolysis response was partially reduced by inhibition of ERK1/2 or PKA alone, but not c-Jun N-terminal kinase (JNK). NOD1-stimulated lipolysis was partially dependent on NF-κB and was completely suppressed by inhibiting ERK1/2 and PKA simultaneously or hormone sensitive lipase (HSL). Our results demonstrate that bacterial PGN stimulates lipolysis in adipocytes by engaging a stress kinase, PKA, NF-κB-dependent lipolytic program. Bacterial NOD1 activation is positioned as a component of metabolic endotoxemia that can contribute to hyperlipidemia, systemic inflammation and insulin resistance by acting directly on adipocytes.  相似文献   

16.
雌激素受体关联受体α 调节脂肪细胞甘油三酯分解   总被引:2,自引:0,他引:2  
雌激素受体关联受体a (Estrogen-related receptor a,ERRα) 是调控机体能量代谢的关键转录调控因子,也是脂肪生成的关键调控者。为研究ERRα对脂肪细胞甘油三酯分解的影响及其分子机制,分化的猪脂肪细胞在PKA (Protein kinase A) 或/和ERK (Extracellular signal-related kinase) 抑制剂预处理和不处理的情况下,再用Ad-ERRα侵染或XCT790处理48 h。通过测定脂肪细胞中甘油三酯浓度和培养液中的甘油释放量分析脂肪细胞的脂解变化;Western blotting方法检测PPARγ (Peroxisome proliferator-activated receptor γ,PPARγ)、perilipin A、p-perilipin A、HSL (Hormone sensitive lipase,HSL) 和ATGL (Adipose triglyceride lipase,ATGL) 蛋白表达。结果显示,ERRα显著促进猪脂肪细胞分化及甘油三酯积累,同时促进了甘油三酯水解;分别及同时阻断PKA和ERK通路并不影响ERRα对脂肪细胞甘油释放的促进作用;ERRα显著上调HSL、ATGL、PPARγ及perilipin A蛋白表达,但p-perilipin A水平并未发生变化。推测过量表达ERRα可能导致HSL和ATGL蛋白表达上调并促进甘油三酯水解,从而为脂肪细胞分化提供更多的游离脂肪酸 (Free fat acid,FFA) 作为甘油三酯合成周转的底物。  相似文献   

17.
Sulforaphane, an aliphatic isothiocyanate derived from cruciferous vegetables, is known for its antidiabetic properties. The effects of sulforaphane on lipid metabolism in adipocytes are not clearly understood. Here, we investigated whether sulforaphane stimulates lipolysis. Mature adipocytes were incubated with sulforaphane for 24 h and analyzed using a lipolysis assay which quantified glycerol released into the medium. We investigated gene expression of hormone-sensitive lipase (HSL), and levels of HSL phosphorylation and AMP-activated protein kinase on sulforaphane-mediated lipolysis in adipocytes. Sulforaphane promoted lipolysis and increased both HSL gene expression and HSL activation. Sulforaphane suppressed AMPK phosphorylation at Thr-172 in a dose-dependent manner, which was associated with a decrease in HSL phosphorylation at Ser-565, enhancing the phosphorylation of HSL Ser-563. Taken together, these results suggest that sulforaphane promotes lipolysis via hormone sensitive lipase activation mediated by decreasing AMPK signal activation in adipocytes.  相似文献   

18.
Serum amyloid A (SAA) is not only an apolipoprotein, but also a member of the adipokine family with potential to enhance lipolysis. The purpose of this study was to explore how SAA facilitates lipolysis in porcine adipocytes. We found that SAA increased the phosphorylation of perilipin and hormone-sensitive lipase (HSL) after 12-h treatment and decreased perilipin expression after 24-h treatment, and these effects were prevented by extracellular signal-regulated kinase (ERK) or protein kinase A (PKA) inhibitors in primary adipocyte cell culture. SAA treatment decreased HSL and adipose triglyceride lipase (ATGL) expression. SAA treatment also activated ERK and PKA by increasing the phosphorylation of these kinases. Moreover, SAA significantly increased porcine adipocyte glycerol release and lipase activity, which was inhibited by either ERK (PD98059) or PKA (H89) inhibitors, suggesting that ERK and PKA were involved in mediating SAA enhanced lipolysis. SAA downregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) mRNA, which was reversed by the ERK inhibitor. We performed a porcine perilipin promoter assay in differentiated 3T3-L1 adipocytes and found that SAA reduced the porcine perilipin promoter specifically through the function of its PPAR response element (PPRE), and this effect was reversed by the ERK inhibitor. These findings demonstrate that SAA-induced lipolysis is a result of downregulation of perilipin and activation of HSL via ERK/PPARγ and PKA signaling pathways. The finding could lead to developing new strategies for reducing human obesity.  相似文献   

19.
20.
脂滴包被蛋白(perilipin)调控脂肪分解   总被引:8,自引:0,他引:8  
Xu C  He JH  Xu GH 《生理科学进展》2006,37(3):221-224
脂滴包被蛋白(perilipin)包被在脂肪细胞和甾体生成细胞脂滴表面。基础状态下perilipin可减少甘油三酯水解,使其贮备增加;脂肪分解时磷酸化的perilipin能促进甘油三酯水解,而且该蛋白对激素敏感脂酶从胞浆向脂滴转位是必需的。据推测,perilipin可能在脂肪分解调控中起到“分子开关”的作用。蛋白激酶A(PKA)、细胞外信号调节激酶(ERK)等信号转导通路参与了脂肪分解。肿瘤坏死因子仅(TNFα)、过氧化物酶体增殖物激活受体γ(PPAγ)激动剂、瘦素(leptin)均可以影响perilipin的表达。新近研究表明,perilipin可通过蛋白酶体途径来调节其蛋白量的表达。脂肪分解调控中的关键蛋白perilipin可以和2型糖尿病、肥胖、动脉粥样硬化等多种代谢性疾病及心血管疾病联系起来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号