首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiamin diphosphate (ThDP), the vitamin B1 coenzyme, is an excellent representative of coenzymes, which carry out electrophilic catalysis by forming a covalent complex with their substrates. The function of ThDP is to greatly increase the acidity of two carbon acids by stabilizing their conjugate bases, the ylide/C2-carbanion of the thiazolium ring and the C2alpha-carbanion (or enamine) once the substrate binds to ThDP. In recent years, several ThDP-bound intermediates on such pathways have been characterized by both solution and solid-state (X-ray) methods. Prominent among these advances are X-ray crystallographic results identifying both oxidative and non-oxidative intermediates, rapid chemical quench followed by NMR detection of a several intermediates which are stable under acidic conditions, and circular dichroism detection of the 1',4'-imino tautomer of ThDP in some of the intermediates. Some of these methods also enable the investigator to determine the rate-limiting step in the complex series of steps.  相似文献   

2.
The discovery of 3-deazathiamine diphosphate (deazaThDP) as a potent inhibitor analog of the cofactor thiamine diphosphate (ThDP) has highlighted the need for an efficient and scalable synthesis of deazaThDP. Such a method would facilitate development of analogs with the ability to inhibit individual ThDP-dependent enzymes selectively. Toward the goal of developing selective inhibitors of the mycobacterial enzyme 2-hydroxy-3-oxoadipate synthase (HOAS), we report an improved synthesis of deazaThDP without use of protecting groups. Tribromo-3-methylthiophene served as a versatile starting material whose selective functionalization permitted access to deazaThDP in five steps, with potential to make other analogs accessible in substantial amounts.  相似文献   

3.
Glutamate mutase is one of several adenosylcobalamin-dependent enzymes that catalyze unusual rearrangements that proceed through a mechanism involving free radical intermediates. The enzyme exhibits remarkable specificity, and so far no molecules other than L-glutamate and L-threo-3-methylaspartate have been found to be substrates. Here we describe the reaction of glutamate mutase with the substrate analog, 2-ketoglutarate. Binding of 2-ketoglutarate (or its hydrate) to the holoenzyme elicits a change in the UV-visible spectrum consistent with the formation of cob(II)alamin on the enzyme. 2-ketoglutarate undergoes rapid exchange of tritium between the 5'-position of the coenzyme and C-4 of 2-ketoglutarate, consistent with the formation of a 2-ketoglutaryl radical analogous to that formed with glutamate. Under aerobic conditions this leads to the slow inactivation of the enzyme, presumably through reaction of free radical species with oxygen. Despite the formation of a substrate-like radical, no rearrangement of 2-ketoglutarate to 3-methyloxalacetate could be detected. The results indicate that formation of the C-4 radical of 2-ketoglutarate is a facile process but that it does not undergo further reactions, suggesting that this may be a useful substrate analog with which to investigate the mechanism of coenzyme homolysis.  相似文献   

4.
The thiamin diphosphate (ThDP)-dependent enzyme indolepyruvate decarboxylase (IPDC) is involved in the biosynthetic pathway of the phytohormone 3-indoleacetic acid and catalyzes the nonoxidative decarboxylation of 3-indolepyruvate to 3-indoleacetaldehyde and carbon dioxide. The steady-state distribution of covalent ThDP intermediates of IPDC reacting with 3-indolepyruvate and the alternative substrates benzoylformate and pyruvate has been analyzed by (1)H NMR spectroscopy. For the first time, we are able to isolate and directly assign covalent intermediates of ThDP with aromatic substrates. The intermediate analysis of IPDC variants is used to infer the involvement of active site side chains and functional groups of the cofactor in distinct catalytic steps during turnover of the different substrates. As a result, three residues (glutamate 468, aspartate 29, and histidine 115) positioned perpendicular to the thiazolium moiety of ThDP are involved in binding of all substrates and decarboxylation of the respective tetrahedral ThDP-substrate adducts. Most likely, interactions of these side chains with the substrate-derived carboxylate account for an optimal orientation of the substrate and/or intermediate in the course of carbon-carbon ligation and decarboxylation supporting the suggested least-motion, maximum overlap mechanism. The active site residue glutamine 383, which is located at the opposite site of the thiazolium nucleus as the "carboxylate pocket" (formed by the Glu-Asp-His triad), is central to the substrate specificity of IPDC, probably through orbital alignment. The Glu51-cofactor proton shuttle is, conjointly with the Glu-Asp-His triad, involved in multiple proton transfer steps, including ylide generation, substrate binding, and product release. Studies with para-substituted benzoylformate substrates demonstrate that the electronic properties of the substrate affect the stabilization or destabilization of the carbanion intermediate or carbanion-like transition state and in that way alter the rate dependence on decarboxylation. In conclusion, general mechanistic principles of catalysis of ThDP-dependent enzymes are discussed.  相似文献   

5.
Nemeria N  Baykal A  Joseph E  Zhang S  Yan Y  Furey W  Jordan F 《Biochemistry》2004,43(21):6565-6575
Two circular dichroism signals observed on thiamin diphosphate (ThDP)-dependent enzymes, a positive band in the 300-305 nm range and a negative one in the 320-330 nm range, were investigated on yeast pyruvate decarboxylase (YPDC) and on the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex (PDHc-E1). Addition of the tetrahedral ThDP-acetaldehyde adduct, 2-alpha-hydroxyethylThDP, to PDHc-E1 generates the positive band at 300 nm, consistent with the formation of the 1',4'-iminopyrimidine tautomer, as also demonstrated for phosphonolactylthiamin diphosphate, a stable analogue of the tetrahedral ThDP-pyruvate adduct 2-alpha-lactylThDP (Jordan, F. et al. (2003) J. Am. Chem. Soc. 125, 12732-12738). Therefore, we suggest that all tetrahedral ThDP-bound covalent complexes will also prefer this tautomer, and that the 4'-aminopyrimidine of ThDP participates in multiple steps of acid-base catalysis on ThDP enzymes. Studies with YPDC and PDHc-E1, and their active center variants, in conjunction with chemical models, enabled assignment of the negative band at 330 nm to a charge-transfer transition between the 4'-aminopyrimidine tautomer (presumed electron donor) and the thiazolium ring (presumed electron acceptor) of ThDP, with no significant contributions from any amino acid side chain of the proteins. However, in both YPDC and PDHc-E1, the presence of substrate or substrate surrogate was required to enable detection, suggesting that the band at 320-330 nm be used as a reporter for the Michaelis complex, involving the amino tautomer, on both enzymes. As the positive band near 300 nm reports on the 1',4'-imino tautomer of ThDP, methods are now available for kinetic monitoring of both tautomeric forms.  相似文献   

6.
In this work, we investigated the rate of formation of the central intermediate of the transketolase reaction with thiamine diphosphate (ThDP) or 4′-methylamino-ThDP as cofactors and its stability using stopped-flow spectroscopy and circular dichroism (CD) spectroscopy. The intermediates of the transketolase reaction were analyzed by NMR spectroscopy. The kinetic stability of the intermediate was shown to be dependent on the state of the amino group of the coenzyme. The rates of the intermediate formation were the same in the case of the native and methylated ThDP, but the rates of the protonation or oxidation of the complex in the ferricyanide reaction were significantly higher in the complex with methylated ThDP. A new negative band was detected in the CD spectrum of the complex transketolase—4′-methylamino-ThDP corresponding to the protonated dihydroxyethyl-4′-methylamino-ThDP released from the active sites of the enzyme. These data suggest that transketolase in the complex with the NH2-methylated ThDP exhibits dihydroxyethyl-4′-methylamino-ThDP-synthase activity. Thus, the 4′-amino group of the coenzyme provides kinetic stability of the central intermediate of the transketolase reaction, dihydroxyethyl-ThDP.  相似文献   

7.
Enzymic catalysis proceeds via intermediates formed in the course of substrate conversion. Here, we directly detect key intermediates in thiamin diphosphate (ThDP)-dependent enzymes during catalysis using (1)H NMR spectroscopy. The quantitative analysis of the relative intermediate concentrations allows the determination of the microscopic rate constants of individual catalytic steps. As demonstrated for pyruvate decarboxylase (PDC), this method, in combination with site-directed mutagenesis, enables the assignment of individual side chains to single steps in catalysis. In PDC, two independent proton relay systems and the stereochemical control of the enzymic environment account for proficient catalysis proceeding via intermediates at carbon 2 of the enzyme-bound cofactor. The application of this method to other ThDP-dependent enzymes provides insight into their specific chemical pathways.  相似文献   

8.
The possibility is examined that 4-hydroxy-2-ketoglutarate aldolase (4-hydroxy-2-ketoglutarate glyoxylatelyase, EC 4.1.3.16), the last step in hydroxyproline catabolism is regulated by intermediates of gluconeogenesis. inhibition of isolated 4-hydoxy-2-ketoglutarate aldolase was examined using dual inhibition studies. It was found that the enzyme exhibits synergistic inhibition by oxaloacetate and pyruvate, but only when the substrate concentration is low. At substrate concentrations approaching saturation, the inhibition by the oxaloacetate and pyruvate becomes additive. These results are discussed in terms of possible control of the use of carbon from hydroxyproline breakdown in glucose production.  相似文献   

9.
The possibility is examined that 4-hydroxy-2-ketoglutarate aldolase (4-hydroxy-2-ketoglutarate glyoxylatelyase, EC 4.1.3.16), the last step in hydroxyproline catabolism is regulated by intermediates of gluconeogenesis. Inhibition of isolated 4-hydoxy-2-ketoglutarate aldolase was examined using dual inhibition studies. It was found that the enzyme exhibits synergistic inhibition by oxaloacetate and pyruvate, but only when the substrate concentration is low. At substrate concentrations approaching saturation, the inhibition by the oxaloacetate and pyruvate becomes additive. These results are discussed in terms of possible control of the use of carbon from hydroxyproline breakdown in glucose production.  相似文献   

10.
Thiamin diphosphate (ThDP)-dependent enzymes catalyze a range of transformations, such as decarboxylation and ligation. We report a novel spectroscopic assay for detection of some of the ThDP-bound intermediates produced on benzoylformate decarboxylase. Benzoylformate decarboxylase was mixed with its alternate substrate p-nitrobenzoylformic acid on a rapid-scan stopped-flow instrument, resulting in formation of three absorbing species (lambda(max) in parentheses): I(1) (a transient at 620 nm), I(2) (a transient at 400 nm), and I(3) (a stable absorbance with lambda(max) > 730 nm). Analysis of the kinetics of the two transient species supports a model in which a noncovalent complex of the substrate and the enzyme is converted to the first covalent intermediate I(1); the absorbance corresponding to I(1) is probably a charge-transfer band arising from the interaction of the thiamin diphosphate-p-nitrobenzoylformic acid covalent adduct (2-p-nitromandelylThDP) and the enzyme. The rate of disappearance of I(1) parallels the rate of formation of I(2). Chemical models suggest the lambda(max) of I(2) (near 400 nm) to be appropriate to the enamine, a key intermediate in ThDP-dependent reactions resulting from the decarboxylation of the thiamin diphosphate-p-nitrobenzoylformic acid covalent adduct. Therefore, the rate of disappearance of I(1) and/or the appearance of I(2) directly measure the rate of decarboxylation. A relaxation kinetic treatment of the pre-steady-state kinetic data also revealed a hitherto unreported facet of the mechanism, alternating active-sites reactivity. Parallel studies of the His70Ala BFD active-site variant indicate that it cannot form the complex reported by the charge-transfer band (I(1)) at the level of the wild-type protein.  相似文献   

11.
The reaction of NADP+ with periodate yields a coenzyme analog that can be bound to the NADP+ binding site of 6-phosphogluconate dehydrogenase from Candida utilis. This coenzyme analog can be irreversibly bound to the enzyme by reduction with sodium borohydride. The binding of one molecule of inhibitor to only one of the two subunits of the enzyme causes the inactivation of this subunit but does not alter the catalytic activity of the other subunit. Thus the two subunits do not have apparent catalytic interactions. When the reaction between the enzyme and the coenzyme analog is carried out in the presence of the substrate, the covalent modification of only one subunit causes the inactivation of both subunits. In this case the two subunits show an extreme negative cooperativity. It is suggested that the binding of the substrate induces in the enzyme molecule a conformational change that is stabilized by the irreversible binding of the coenzyme analog.  相似文献   

12.
Acetohydroxy acid synthase (AHAS) is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the first common step in the biosynthesis of branched-chain amino acids, condensation of pyruvate with a second 2-ketoacid to form either acetolactate or acetohydroxybutyrate. AHAS isozyme II from Escherichia coli is specific for pyruvate as the first donor substrate but exhibits a 60-fold higher specificity for 2-ketobutyrate (2-KB) over pyruvate as an acceptor substrate. In previous studies relying on steady state and transient kinetics, substrate competition and detailed analysis of the distribution of intermediates in the steady-state, we have identified several residues which confer specificity for the donor and acceptor substrates, respectively. Here, we examine the roles of active site polar residues Glu47, Gln110, Lys159, and His251 for elementary steps of catalysis using similar approaches. While Glu47, the conserved essential glutamate conserved in all ThDP-dependent enzymes whose carboxylate is in H-bonding distance of the ThDP iminopyrimidine N1', is involved as expected in cofactor activation, substrate binding, and product elimination, our studies further suggest a crucial catalytic role for it in the carboligation of the acceptor and the hydroxyethyl-ThDP enamine intermediate. The Glu47-cofactor proton shuttle acts in concert with Gln110 in the carboligation. We suggest that either the transient oxyanion on the acceptor carbonyl is stabilized by H-bonding to the glutamine side chain, or carboligation involves glutamine tautomerization and the elementary reactions of addition and protonation occur in a concerted manner. This is in contrast to the situation in other ThDP enzymes that catalyze a carboligation, such as, e.g., transketolase or benzaldehyde lyase, where histidines act as general acid/base catalysts. Our studies further suggest global catalytic roles for Gln110 and Glu47, which are engaged in all major bond-breaking and bond-making steps. In contrast to earlier suggestions, Lys159 has a minor effect on the kinetics and specificity of AHAS II, far less than does Arg276, previously shown to influence the specificity for a 2-ketoacid as a second substrate. His251 has a large effect on donor substrate binding, but this effect masks any other effects of replacement of His251.  相似文献   

13.
Thiamin diphosphate (ThDP) is an essential cofactor for a number of enzymes, and especially involved in the nonoxidative decarboxylation of -keto acids by pyruvate decarboxylase (PDC). Recently the crystal structure of PDC bound ThDP has been determined. Based on these X-ray data MD simulations of the isolated coenzyme as well as of ThDP in its enzymatic environment were performed, using the GROMOS87 software package. For the ThDP-apoenzyme modelling all significant amino acid residues with a cut-off radius less than 8.5 Å from the cofactor were taken into account.Because the activity of the coenzyme mainly depends on the formation of a specific structure, the conformational behavior of ThDP and enzyme bound ThDP were investigated within the MD simulations in more detail. Therefore, trajectories of significant structural parameters such as the ring torsion angles T and P as well as essential hydrogen bonds were analyzed by our graphics tool. Moreover, Ramachandran-like plots with respect to the torsion angles T and P were used for the illustration of preferred orientations of the two aromatic rings in ThDP.Finally, MD simulations on ThDP analogs with less or none catalytic activity and apoenzyme mutants were included, in order to get hints of conformational effects and significant interactions in relation to cofactor-apoenzyme binding and the catalytic mechanism.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089460020312  相似文献   

14.
The equilibria among the various ionization and tautomeric states involved in the activation of ThDP is addressed using high level density functional theory calculations, X3LYP/6-311++G(d,p)//X3LYP(PB)/6-31++G(d,p). This study provides the first theoretically derived thermodynamic data for the internal equilibria in the activation of ThDP. The role of the medium polarity on the geometry and thermodynamics of the diverse equilibria of ThDP is addressed. The media chosen are cyclohexane and water, as paradigms of apolar and polar media. The results suggest that all ionization and tautomeric states are accessible during the catalytic cycle, even in the absence of substrate, being APH+ the form required to interconvert the AP and IP tautomers; and the generation of the ylide proceeds via the formation of the IP form. Additionally, the calculated ΔG° values allow to calculate all the equilibrium constants, including the pKC2 for the thiazolium C2 atom whose ionization is believed to initiate the catalytic cycle.  相似文献   

15.
The dehydrogenase/decarboxylase (E1b) component of the 4 MD human branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) is a thiamin diphosphate (ThDP)-dependent enzyme. We have determined the crystal structures of E1b with ThDP bound intermediates after decarboxylation of alpha-ketoacids. We show that a key tyrosine residue in the E1b active site functions as a conformational switch to reduce the reactivity of the ThDP cofactor through interactions with its thiazolium ring. The intermediates do not assume the often-postulated enamine state, but likely a carbanion state. The carbanion presumably facilitates the second E1b-catalyzed reaction, involving the transfer of an acyl moiety from the intermediate to a lipoic acid prosthetic group in the transacylase (E2b) component of the BCKDC. The tyrosine switch further remodels an E1b loop region to promote E1b binding to E2b. Our results illustrate the versatility of the tyrosine switch in coordinating the catalytic events in E1b by modulating the reactivity of reaction intermediates.  相似文献   

16.
Thiamin diphosphate (ThDP)-dependent enzymes play pivotal roles in intermediary metabolism of virtually all organisms. Although extensive mechanistic work on cofactor models and various enzymes has served as a guide to understand general principles of catalysis, high-resolution structural information of reaction intermediates along the catalytic pathway was scarcely available until recently. Here, we review cryocrystallographic studies on the prototypical ThDP enzymes pyruvate oxidase and transketolase, which provided exciting insights into the chemical nature and structural features of several key intermediates and into the stereochemical course of substrate processing. The structures revealed a conserved (S)-configuration at the C2alpha stereocenter of the initially formed tetrahedral intermediate in the different enzymes with the scissile C2alpha–C2beta bond being directed perpendicular to the aromatic ring plane of the thiazolium portion of ThDP confirming the proposed maximum overlap mechanism. Elimination of the respective leaving groups (carbon dioxide, sugar phosphates) appears to be driven – amongst other factors such as stereoelectronic control – by strain relief as the C2–C2alpha bond, which connects C2 of ThDP with the carbonyl of the substrate, substantially deviates from planarity and relaxes to an in-plane conformation only after bond fission to give an enamine-type intermediate with considerable delocalization of the free electron pair onto the thiazolium ring. Except for the apparent flexibility of the cofactor itself, no major structural rearrangements are detectable indicating that the enzyme active centers are poised for catalysis. The structures also provide the basis for understanding the origins of substrate and reaction specificity.  相似文献   

17.
18.
The roles of the D-ribosyl moiety and the bulky axial ligand of the nucleotide loop of adenosylcobalamin in coenzymic function have been investigated using two series of coenzyme analogs bearing various artificial bases. The 2-methylbenzimidazolyl trimethylene analog that exists exclusively in the base-off form was a totally inactive coenzyme for diol dehydratase and served as a competitive inhibitor. The benzimidazolyl trimethylene analog and the benzimidazolylcobamide coenzyme were highly active for diol dehydratase and ethanolamine ammonia-lyase. The imidazolylcobamide coenzyme was 59 and 9% as active as the normal coenzyme for diol dehydratase and ethanolamine ammonia-lyase, respectively. The latter analog served as an effective suicide coenzyme for both enzymes, although the partition ratio (k(cat)/k(inact)) of 630 for ethanolamine ammonia-lyase is much lower than that for diol dehydratase. Suicide inactivation was accompanied by the accumulation of a cob(II)amide species, indicating irreversible cleavage of the coenzyme Co-C bond during the inactivation. It was thus concluded that the bulkiness of a Co-coordinating base of the nucleotide loop is essential for both the initial activity and continuous catalytic turnovers. Since the k(cat)/k(inact) value for the imidazolylcobamide in diol dehydratase was 27-times higher than that for the imidazolyl trimethylene analog, it is clear that the ribosyl moiety protects the reaction intermediates from suicide inactivation. Stopped-flow measurements indicated that the rate of Co-C bond homolysis is essentially unaffected by the bulkiness of the Co-coordinating base for diol dehydratase. Thus, it seems unlikely that the Co-C bond is labilized through a ground state mechanochemical triggering mechanism in diol dehydratase.  相似文献   

19.
3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase carry out the ultimate steps in the conversion of benzoate and 3-chlorobenzoate to tricarboxylic acid cycle intermediates in bacteria utilizing the 3-oxoadipate pathway. This report describes the characterization of DNA fragments with the overall length of 5.9 kb from Pseudomonas sp. strain B13 that encode these enzymes. DNA sequence analysis revealed five open reading frames (ORFs) plus an incomplete one. ORF1, of unknown function, has a length of 414 bp. ORF2 (catI) encodes a polypeptide of 282 amino acids and starts at nucleotide 813. ORF3 (catJ) encodes a polypeptide of 260 amino acids and begins at nucleotide 1661. CatI and CatJ are the subunits of the 3-oxoadipate:succinyl-CoA transferase, whose activity was demonstrated when both genes were ligated into expression vector pET11a. ORF4, termed catF, codes for a protein of 401 amino acid residues with a predicted mass of 41,678 Da with 3-oxoadipyl-CoA thiolase activity. The last three ORFs seem to form an operon since they are oriented in the same direction and showed an overlapping of 1 bp between catI and catJ and of 4 bp between catJ and catF. Conserved functional groups important for the catalytic activity of CoA transferases and thiolases were identified in CatI, CatJ, and CatF. ORF5 (catD) encodes the 3-oxoadipate enol-lactone hydrolase. An incomplete ORF6 of 1,183 bp downstream of ORF5 and oriented in the opposite direction was found. The protein sequence deduced from ORF6 showed a putative AMP-binding domain signature.  相似文献   

20.
Rat liver 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase catalyzes, in addition to its normal biosynthetic or forward reaction (HMG-CoA + 2 NADPH + 2H+----mevalonate + 2 NAD+ + CoASH), the reverse reaction (mevalonate + CoASH + 2 NADP+----HMG-CoA + 2 NADPH + 2H+) and two "half-reactions" that involve the presumed intermediate mevaldate (mevaldate + CoASH + NADP+----HMG-CoA + NADPH + H+ and mevaldate + NADPH + H+----mevalonate + NADP+). These reactions were studied using both enzyme solubilized by the traditional freeze-thaw method and enzyme solubilized with a nonionic detergent in the presence of inhibitors of proteolysis. All four reactions were inhibited by mevinolin, a known inhibitor of the forward (biosynthetic) reaction catalyzed by HMG-CoA reductase. When the enzyme was inactivated by ATP and a cytosolic, ADP-dependent HMG-CoA reductase kinase, the rates of both the forward reaction and the half-reactions decreased to comparable extents. Although coenzyme A is not a stoichiometric participant in the second half-reaction (mevaldate + NADPH + H+----mevalonate + NADP+), it was required as an activator of this reaction. This observation implies that coenzyme A may remain bound to the enzyme throughout the normal catalytic cycle of HMG-CoA reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号