首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytoplasmic dynein is a large multisubunit complex involved in retrograde transport and the positioning of various organelles. Dynein light chain (LC) subunits are conserved across species; however, the molecular contribution of LCs to dynein function remains controversial. One model suggests that LCs act as cargo-binding scaffolds. Alternatively, LCs are proposed to stabilize the intermediate chains (ICs) of the dynein complex. To examine the role of LCs in dynein function, we used Saccharomyces cerevisiae, in which the sole function of dynein is to position the spindle during mitosis. We report that the LC8 homologue, Dyn2, localizes with the dynein complex at microtubule ends and interacts directly with the yeast IC, Pac11. We identify two Dyn2-binding sites in Pac11 that exert differential effects on Dyn2-binding and dynein function. Mutations disrupting Dyn2 elicit a partial loss-of-dynein phenotype and impair the recruitment of the dynein activator complex, dynactin. Together these results indicate that the dynein-based function of Dyn2 is via its interaction with the dynein IC and that this interaction is important for the interaction of dynein and dynactin. In addition, these data provide the first direct evidence that LC occupancy in the dynein motor complex is important for function.  相似文献   

2.
The heavy chain of dynein forms a globular motor domain that tightly couples the ATP-cleavage region and the microtubule-binding site to transform chemical energy into motion along the cytoskeleton. Here we show that, in the fungus Ustilago maydis, two genes, dyn1 and dyn2, encode the dynein heavy chain. The putative ATPase region is provided by dyn1, while dyn2 includes the predicted microtubule-binding site. Both genes are located on different chromosomes, are transcribed into independent mRNAs and are translated into separate polypeptides. Both Dyn1 and Dyn2 co-immunoprecipitated and co-localized within growing cells, and Dyn1-Dyn2 fusion proteins partially rescued mutant phenotypes, suggesting that both polypeptides interact to form a complex. In cell extracts the Dyn1-Dyn2 complex dissociated, and microtubule affinity purification indicated that Dyn1 or associated polypeptides bind microtubules independently of Dyn2. Both Dyn1 and Dyn2 were essential for cell survival, and conditional mutants revealed a common role in nuclear migration, cell morphogenesis and microtubule organization, indicating that the Dyn1-Dyn2 complex serves multiple cellular functions.  相似文献   

3.
Cytoplasmic dynein is an approximately 1.4 MDa multi‐protein complex that transports many cellular cargoes towards the minus ends of microtubules. Several in vitro studies of mammalian dynein have suggested that individual motors are not robustly processive, raising questions about how dynein‐associated cargoes can move over long distances in cells. Here, we report the production of a fully recombinant human dynein complex from a single baculovirus in insect cells. Individual complexes very rarely show directional movement in vitro. However, addition of dynactin together with the N‐terminal region of the cargo adaptor BICD2 (BICD2N) gives rise to unidirectional dynein movement over remarkably long distances. Single‐molecule fluorescence microscopy provides evidence that BICD2N and dynactin stimulate processivity by regulating individual dynein complexes, rather than by promoting oligomerisation of the motor complex. Negative stain electron microscopy reveals the dynein–dynactin–BICD2N complex to be well ordered, with dynactin positioned approximately along the length of the dynein tail. Collectively, our results provide insight into a novel mechanism for coordinating cargo binding with long‐distance motor movement.  相似文献   

4.
The intraflagellar transport (IFT) machinery consists of the anterograde motor kinesin‐II, the retrograde motor IFT dynein, and the IFT‐A and ‐B complexes. However, the interaction among IFT motors and IFT complexes during IFT remains elusive. Here, we show that the IFT‐B protein IFT54 interacts with both kinesin‐II and IFT dynein and regulates anterograde IFT. Deletion of residues 342–356 of Chlamydomonas IFT54 resulted in diminished anterograde traffic of IFT and accumulation of IFT motors and complexes in the proximal region of cilia. IFT54 directly interacted with kinesin‐II and this interaction was strengthened for the IFT54Δ342–356 mutant in vitro and in vivo. The deletion of residues 261–275 of IFT54 reduced ciliary entry and anterograde traffic of IFT dynein with accumulation of IFT complexes near the ciliary tip. IFT54 directly interacted with IFT dynein subunit D1bLIC, and deletion of residues 261–275 reduced this interaction. The interactions between IFT54 and the IFT motors were also observed in mammalian cells. Our data indicate a central role for IFT54 in binding the IFT motors during anterograde IFT.  相似文献   

5.
Proper positioning of the mitotic spindle is often essential for cell division and differentiation processes. The asymmetric cell division characteristic of budding yeast, Saccharomyces cerevisiae, requires that the spindle be positioned at the mother–bud neck and oriented along the mother–bud axis. The single dynein motor encoded by the S. cerevisiae genome performs an important but nonessential spindle-positioning role. We demonstrate that kinesin-related Kip3p makes a major contribution to spindle positioning in the absence of dynein. The elimination of Kip3p function in dyn1Δ cells severely compromised spindle movement to the mother–bud neck. In dyn1Δ cells that had completed positioning, elimination of Kip3p function caused spindles to mislocalize to distal positions in mother cell bodies. We also demonstrate that the spindle-positioning defects exhibited by dyn1 kip3 cells are caused, to a large extent, by the actions of kinesin- related Kip2p. Microtubules in kip2Δ cells were shorter and more sensitive to benomyl than wild-type, in contrast to the longer and benomyl-resistant microtubules found in dyn1Δ and kip3Δ cells. Most significantly, the deletion of KIP2 greatly suppressed the spindle localization defect and slow growth exhibited by dyn1 kip3 cells. Likewise, induced expression of KIP2 caused spindles to mislocalize in cells deficient for dynein and Kip3p. Our findings indicate that Kip2p participates in normal spindle positioning but antagonizes a positioning mechanism acting in dyn1 kip3 cells. The observation that deletion of KIP2 could also suppress the inviability of dyn1Δ kar3Δ cells suggests that kinesin-related Kar3p also contributes to spindle positioning.  相似文献   

6.
Mark P Dodding 《Cell research》2014,24(12):1385-1386
Control of the activity of the microtubule motor cytoplasmic dynein 1 is essential for its function in intracellular transport. A recent paper by McKenney et al. published in Science shows that activation of processive dynein motility requires the formation of cargo adaptor-dynein-dynactin complexes.Cells rely on their intracellular components being in the right place at the right time. In eukaryotic cells, microtubule-based transport by motor proteins belonging to the dynein and kinesin families plays a crucial role in regulating the spatial-temporal distribution of a multitude of membrane bound organelles, protein complexes, and ribonucleoprotein complexes. Disruption of these transport functions can play a key role in pathological processes and the activities of microtubule motors are frequently usurped by both viral and bacterial pathogens to aid their replication1. Cytoplasmic dynein 1 is the predominant motor protein complex mediating transport towards the minus end of microtubules and it transports many different cargoes2. The dynein holoenzyme is composed of a dimeric heavy chain that contains the microtubule-binding and AAA-ATPase motor domains associated with a series of smaller accessory proteins implicated in regulation and cargo binding. Targeting of the motor to a specific cargo is often mediated by so-called ''adaptor proteins'' that can associate with both the cargo (e.g., endosomes) and the motor complex itself.Diverse functions and diverse cargoes necessitate a high level of cytoplasmic dynein regulation. Such regulation must limit motor activity to prevent wasteful ATP hydrolysis in the absence of cargo transport and prevent inappropriate movement of cargo-free motors on microtubules. Regulation must allow exquisite responses to dynamic spatial and temporal cues for cargo transport and allow for the selective recognition of a wide range of cargoes/adaptors that, ostensibly at least, may be quite different. It must also support bidirectional transport processes.A second multiprotein complex, dynactin3, helps to regulate cytoplasmic dynein 1. Indeed, dynactin is required for almost all known functions of cytoplasmic dynein. It is thought that dynactin plays a key role in attachment to cargo and promotes dynein activity. Despite this, its precise mechanism of action and the role of cargo attachment itself has remained unclear.Recently, a study by McKenney et al.4 in Science and a complimentary study by Schlager et al.5 in EMBO J, have taken crucial steps forward, uncovering a role for tripartite cargo adaptor-dynein-dynactin complexes in directly promoting dynein activity (Figure 1). Both of these studies utilize elegant biochemical purification coupled with the technical feat of high-resolution, single-molecule, multicolor TIRF microscopy to examine the properties of these assemblies as they move on labelled microtubules in vitro.Open in a separate windowFigure 1Schematic showing proposed organization of an active dynein-dynactin-cargo complex. Cargo (e.g., an endosome) couples to the motor complex via surface receptors (e.g., a Rab GTPases) that recruit specific adaptor proteins (e.g., BiCD2, Hook). These in turn recruit dynein/dynactin and stabilize their association, supporting the microtubule binding and processivity of the dynein-dynactin complex.McKenney et al.4 begin by showing that cytoplasmic dynein purified from rat brain (that is free from both dynactin and cargo proteins) binds to microtubules but does not engage in the processive long distance movements characteristic of motility in vivo. This implies that dynein requires activation. To isolate transport-active complexes, the authors use an alternative approach — affinity purification (from RPE-1 cells) via the cargo adaptor BicD2 (that couples dynein to Rab6-containing organelles). This yields stable associations of BicD2, dynein and dynactin, which when examined in TIRF motility assays, exhibit speeds and run lengths approaching those observed in vivo. Importantly, the authors reveal that these complexes consist of a single copy of dynein, dynactin and BicD2 (a dimer), demonstrating that the intrinsic processivity of the holoenzyme is directly enhanced and ruling out effects from cooperation between motor complexes in this system.The authors then ask which components of this tripartite complex are needed for dynein activation — is BicD2 required or is dynactin sufficient? They show that removal of BicD2 results in a loss of processive motility and dissociation of dynein from dynactin, demonstrating the importance of the cargo adaptor itself in formation of stable dynein-dynactin complexes and motility. Schlager et al.5 come to similar conclusions in their study using recombinant human dynein produced in baculovirus (an achievement in its own right), showing that purified dynactin is unable to activate motility in the absence of BicD2.To determine whether this mechanism is unique to BicD2 or whether it holds for other cargo adaptors, McKenney et al. expand their study to include three other adaptors — Rab11-FIP3 (for recycling endosomes), Spindly (kinetochores) and Hook (early endosomes). They show that all three can be used to purify dynein-dynactin and that those complexes are capable of processive motility in a manner comparable to those derived from BicD2 affinity purification.These studies thus highlight a crucial role for the cargo adaptor, coupled with dynactin, in dynein activation. This is somewhat reminiscent of several kinesin family proteins which exist in an inactive state in the absence of cargo6. In the future it will be important to understand why dynein is inactive in the absence of dynactin/cargo and what changes occur within the complex upon cargo adaptor/dynactin binding to cause its conversion to a processive motor. Clues may come from comparison with S. Cerevisiae dynein which appears constitutively active and may associate with dynactin in the absence of cargo7. It will also be important to determine the regulatory signals that control formation and dissociation of these active complexes, how they interact with other dynein regulators such as the Lis1-NudEL complex and how they are affected by the action of plus-end-directed motors associated with the same cargo.Further progress should also come from understanding of the structural and biophysical characteristics of the motor-cargo interfaces that we now know must ultimately drive dynein activation. Indeed, the fact that four distinct cargo adaptors can promote formation of transport-active complexes may imply the existence of common features in dynein-cargo adaptor recognition mechanisms that support activation. Importantly, the establishment of these elegant in vitro systems that recapitulate many of the properties of cytoplasmic dynein in vivo will now allow for a full molecular dissection of this ubiquitous and fascinating process.  相似文献   

7.
Mutations in the tail of the cytoplasmic dynein molecule have been reported to cause neurodegenerative disease in mice. The mutant mouse strain Legs at odd angles (Loa) has impaired retrograde axonal transport, but the molecular deficiencies in the mutant dynein molecule, and how they contribute to neurodegeneration, are unknown. To address these questions, we purified dynein from wild-type mice and the Legs at odd angles mutant mice. Using biochemical, single-molecule, and live-cell-imaging techniques, we find a marked inhibition of motor run-length in vitro and in vivo, and significantly altered motor domain coordination in the dynein from mutant mice. These results suggest a potential role for the dynein tail in motor function, and provide direct evidence for a link between single-motor processivity and disease.  相似文献   

8.
Cytoplasmic dynein, the 1.2 MDa motor driving minus-end-directed motility, has been reported to move processively along microtubules, but its mechanism of motility remains poorly understood. Here, using S. cerevisiae to produce recombinant dynein with a chemically controlled dimerization switch, we show by structural and single-molecule analysis that processivity requires two dynein motor domains but not dynein's tail domain or any associated subunits. Dynein advances most frequently in 8 nm steps, although longer as well as side and backward steps are observed. Individual motor domains show a different stepping pattern, which is best explained by the two motor domains shuffling in an alternating manner between rear and forward positions. Our results suggest that cytoplasmic dynein moves processively through the coordination of its two motor domains, but its variable step size and direction suggest a considerable diffusional component to its step, which differs from Kinesin-1 and is more akin to myosin VI.  相似文献   

9.
Intrinsically disordered protein (IDP) duplexes composed of two IDP chains cross-linked by bivalent partner proteins form scaffolds for assembly of multiprotein complexes. The N-terminal domain of dynein intermediate chain (N-IC) is one such IDP that forms a bivalent scaffold with multiple dynein light chains including LC8, a hub protein that promotes duplex formation of diverse IDP partners. N-IC also binds a subunit of the dynein regulator, dynactin. Here we characterize interactions of a yeast ortholog of N-IC (N-Pac11) with yeast LC8 (Dyn2) or with the intermediate chain-binding subunit of yeast dynactin (Nip100). Residue level changes in Pac11 structure are monitored by NMR spectroscopy, and binding energetics are monitored by isothermal titration calorimetry (ITC). N-Pac11 is monomeric and primarily disordered except for a single α-helix (SAH) at the N terminus and a short nascent helix, LH, flanked by the two Dyn2 recognition motifs. Upon binding Dyn2, the only Pac11 residues making direct protein-protein interactions are in and immediately flanking the recognition motifs. Dyn2 binding also orders LH residues of Pac11. Upon binding Nip100, only Pac11 SAH residues make direct protein-protein interactions, but LH residues at a distant sequence position and L1 residues in an adjacent linker are also ordered. The long distance, ligand-dependent ordering of residues reveals new elements of dynamic structure within IDP linker regions.  相似文献   

10.
The kinesin-2 family motor KIF3A/B works together with dynein to bidirectionally transport intraflagellar particles, melanosomes, and neuronal vesicles. Compared with kinesin-1, kinesin-2 is less processive, and its processivity is more sensitive to load, suggesting that processivity may be controlled by different gating mechanisms. We used stopped-flow and steady-state kinetics experiments, along with single-molecule and multimotor assays to characterize the entire kinetic cycle of a KIF3A homodimer that exhibits motility similar to that of full-length KIF3A/B. Upon first encounter with a microtubule, the motor rapidly exchanges both mADP and mATP. When adenosine 5′-[(β,γ)-imido]triphosphate was used to entrap the motor in a two-head-bound state, exchange kinetics were unchanged, indicating that rearward strain in the two-head-bound state does not alter nucleotide binding to the front head. A similar lack of front head gating was found when intramolecular strain was enhanced by shortening the neck linker domain from 17 to 14 residues. In single-molecule assays in ADP, the motor dissociates at 2.1 s−1, 20-fold slower than the stepping rate, demonstrating the presence of rear head gating. In microtubule pelleting assays, the KDMt is similar in ADP and ATP. The data and accompanying simulations suggest that, rather than KIF3A processivity resulting from strain-dependent regulation of nucleotide binding (front head gating), the motor spends a significant fraction of its hydrolysis cycle in a low affinity state but dissociates only slowly from this state. This work provides a mechanism to explain differences in the load-dependent properties of kinesin-1 and kinesin-2.  相似文献   

11.
A system distinct from the central pair–radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the γ heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this γ HC–LC1–microtubule ternary complex functions as a conformational switch to control outer arm activity.  相似文献   

12.
Nuclei migrate during many events, including fertilization, establishment of polarity, differentiation, and cell division. The Caenorhabditis elegans KASH protein UNC-83 localizes to the outer nuclear membrane where it recruits kinesin-1 to provide the major motor activity required for nuclear migration in embryonic hyp7 cells. Here we show that UNC-83 also recruits two dynein-regulating complexes to the cytoplasmic face of the nucleus that play a regulatory role. One consists of the NudE homolog NUD-2 and the NudF/Lis1/Pac1 homolog LIS-1, and the other includes dynein light chain DLC-1, the BicaudalD homolog BICD-1, and the Egalitarian homologue EGAL-1. Genetic disruption of any member of these two complexes caused nuclear migration defects that were enhanced in some double mutant animals, suggesting that BICD-1 and EGAL-1 function in parallel to NUD-2. Dynein heavy chain mutant animals also had a nuclear migration defect, suggesting these complexes function through dynein. Deletion analysis indicated that independent domains of UNC-83 interact with kinesin and dynein. These data suggest a model where UNC-83 acts as the cargo-specific adaptor between the outer nuclear membrane and the microtubule motors kinesin-1 and dynein. Kinesin-1 functions as the major force generator during nuclear migration, while dynein is involved in regulation of bidirectional transport of the nucleus.  相似文献   

13.
BACKGROUND: During anaphase in budding yeast, dynein inserts the mitotic spindle across the neck between mother and daughter cells. The mechanism of dynein-dependent spindle positioning is thought to involve recruitment of dynein to the cell cortex followed by capture of astral microtubules (aMTs). RESULTS: We report the native-level localization of the dynein heavy chain and characterize the effects of mutations in dynein regulators on its intracellular distribution. Budding yeast dynein displays discontinuous localization along aMTs, with enrichment at the spindle pole body and aMT plus ends. Loss of Bik1p (CLIP-170), the cargo binding domain of Bik1p, or Pac1p (LIS1) resulted in diminished targeting of dynein to aMTs. By contrast, loss of dynactin or a mutation in the second P loop domain of dynein resulted in an accumulation of dynein on the plus ends of aMTs. Unexpectedly, loss of Num1p, a proposed dynein cortical anchor, also resulted in selective accumulation of dynein on the plus ends of anaphase aMTs. CONCLUSIONS: We propose that, rather than first being recruited to the cell cortex, dynein is delivered to the cortex on the plus ends of polymerizing aMTs. Dynein may then undergo Num1p-dependent activation and transfer to the region of cortical contact. Based on the similar effects of loss of Num1p and loss of dynactin on dynein localization, we suggest that Num1p might also enhance dynein motor activity or processivity, perhaps by clustering dynein motors.  相似文献   

14.
Numata N  Shima T  Ohkura R  Kon T  Sutoh K 《FEBS letters》2011,585(8):1185-1190
We examined the functional roles of C-sequence, a 47-kDa non-AAA+ module at the C-terminal end of the 380-kDa Dictyostelium dynein motor domain. When the distal segment of the C-sequence was deleted from the motor domain, the single-molecule processivity of the dimerized motor domain was selectively impaired without its ensemble motile ability and ATPase activity being severely affected. When the hinge-like sequence between the distal and proximal C-sequence segments was made more or less flexible, the dimeric motor showed lower or higher processivity, respectively. These results suggest a potential function of the distal C-sequence segment as a modulator of processivity.  相似文献   

15.
Mammalian KIF3AC is classified as a heterotrimeric kinesin-2 that is best known for organelle transport in neurons, yet in vitro studies to characterize its single molecule behavior are lacking. The results presented show that a KIF3AC motor that includes the native helix α7 sequence for coiled-coil formation is highly processive with run lengths of ∼1.23 μm and matching those exhibited by conventional kinesin-1. This result was unexpected because KIF3AC exhibits the canonical kinesin-2 neck-linker sequence that has been reported to be responsible for shorter run lengths observed for another heterotrimeric kinesin-2, KIF3AB. However, KIF3AB with its native neck linker and helix α7 is also highly processive with run lengths of ∼1.62 μm and exceeding those of KIF3AC and kinesin-1. Loop L11, a component of the microtubule-motor interface and implicated in activating ADP release upon microtubule collision, is significantly extended in KIF3C as compared with other kinesins. A KIF3AC encoding a truncation in KIF3C loop L11 (KIF3ACΔL11) exhibited longer run lengths at ∼1.55 μm than wild-type KIF3AC and were more similar to KIF3AB run lengths, suggesting that L11 also contributes to tuning motor processivity. The steady-state ATPase results show that shortening L11 does not alter kcat, consistent with the observation that single molecule velocities are not affected by this truncation. However, shortening loop L11 of KIF3C significantly increases the microtubule affinity of KIF3ACΔL11, revealing another structural and mechanistic property that can modulate processivity. The results presented provide new, to our knowledge, insights to understand structure-function relationships governing processivity and a better understanding of the potential of KIF3AC for long-distance transport in neurons.  相似文献   

16.
Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus‐end directed kinesin and minus‐end directed dynein motors. Microtubules are decorated by microtubule‐associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles. Dysregulation of tau leads to a range of neurodegenerative diseases known as tauopathies including Alzheimer's disease (AD). Tau reduces the processivity of kinesin and dynein by acting as an obstacle on the microtubule. Single‐molecule assays indicate that kinesin‐1 is more strongly inhibited than kinesin‐2 or dynein, suggesting tau might act to spatially modulate the activity of specific motors. To investigate the role of tau in regulating bidirectional transport, we isolated phagosomes driven by kinesin‐1, kinesin‐2, and dynein and reconstituted their motility along microtubules. We find that tau biases bidirectional motility towards the microtubule minus‐end in a dose‐dependent manner. Optical trapping measurements show that tau increases the magnitude and frequency of forces exerted by dynein through inhibiting opposing kinesin motors. Mathematical modeling indicates that tau controls the directional bias of intracellular cargoes through differentially tuning the processivity of kinesin‐1, kinesin‐2, and dynein. Taken together, these results demonstrate that tau modulates motility in a motor‐specific manner to direct intracellular transport, and suggests that dysregulation of tau might contribute to neurodegeneration by disrupting the balance of plus‐ and minus‐end directed transport.   相似文献   

17.
Dynein is a microtubule-based molecular motor that is involved in various biological functions, such as axonal transport, mitosis, and cilia/flagella movement. Although dynein was discovered 50 years ago, the progress of dynein research has been slow due to its large size and flexible structure. Recent progress in understanding the force-generating mechanism of dynein using x-ray crystallography, cryo-electron microscopy, and single molecule studies has provided key insight into the structure and mechanism of action of this complex motor protein.It has been 50 years since dynein was discovered and named by Ian Gibbons as a motor protein that drives cilia/flagella bending (Gibbons, 1963; Gibbons and Rowe, 1965). In the mid-1980s, dynein was also found to power retrograde transport in neurons (Paschal and Vallee, 1987). Subsequently, the primary amino acid sequence of the cytoplasmic dynein heavy chain, which contains the motor domain, was determined from the cDNA sequence (Mikami et al., 1993; Zhang et al., 1993). Like other biological motors, such as kinesins and myosins, the amino acid sequence of the dynein motor domain is well conserved. There are 16 putative genes that encode dynein heavy chains in the human genome (Yagi, 2009). Among these is one gene encoding cytoplasmic dynein heavy chain and one encoding retrograde intraflagellar transport dynein heavy chain, while the rest encode for heavy chains of axonemal dyneins. Most of the genes encoding the human dynein heavy chain have a counterpart in Chlamydomonas reinhardtii, which suggests that their functions are conserved from algae to humans.Dynein is unique compared with kinesin and myosin because dynein molecules form large molecular complexes. For example, one axonemal outer arm dynein molecule of C. reinhardtii is composed of three dynein heavy chains, two intermediate chains, and more than ten light chains (King, 2012). Mammalian cytoplasmic dynein consists of two heavy chains and several smaller subunits (Fig. 1 A; Vallee et al., 1988; Allan, 2011). The cargoes of cytoplasmic dynein are various membranous organelles, including lysosomes, endosomes, phagosomes, and the Golgi complex (Hirokawa, 1998). It is likely that one cytoplasmic dynein heavy chain can adapt to diverse cargos and functions by changing its composition.Open in a separate windowFigure 1.Atomic structures of cytoplasmic dynein. (A) Schematic structure of cytoplasmic dynein complex, adapted from Allan (2011). (B) The primary structure of cytoplasmic dynein. (C and D) The atomic model of D. discoideum cytoplasmic dynein motor domain (PDB accession no. 3VKG) overlaid on a microtubule (EMDB-5193; Sui and Downing, 2010) according to the orientation determined by Mizuno et al. (2007) (C) Side view. (D) View from the plus end of microtubule. (E) Schematic domain structure of dynein.Dynein must have a distinct motor mechanism from kinesin and myosin, because it belongs to the AAA+ family of proteins and does not have the conserved amino acid motifs, called the switch regions, present in kinesins, myosins, and guanine nucleotide-binding proteins (Vale, 1996). Therefore, studying dynein is of great interest because it will reveal new design principles of motor proteins. This review will focus on the mechanism of force generation by cytoplasmic and axonemal dynein heavy chains revealed by recent structural and biophysical studies.

Anatomy of dynein

To understand the chemomechanical cycle of dynein based on its molecular structure, it is important to obtain well-diffracting crystals and build accurate atomic models. Recently, Kon and colleagues determined the crystal structures of Dictyostelium discoideum cytoplasmic dynein motor domain, first at 4.5-Å resolution (Kon et al., 2011), and subsequently at 2.8 Å (without the microtubule binding domain) and 3.8-Å (wild type) resolution (Kon et al., 2012). Carter and colleagues also determined the crystal structures of the Saccharomyces cerevisiae (yeast) cytoplasmic dynein motor domain, first at 6-Å resolution (Carter et al., 2011), and later at 3.3–3.7-Å resolution (Schmidt et al., 2012). According to these crystal structures as well as previous EM studies, the overall structure of the dynein heavy chain is divided into four domains: tail, linker, head, and stalk (Fig. 1, B–E). Simply put, each domain carries out one essential function of a motor protein: the tail is the cargo binding domain, the head is the site of ATP hydrolysis, the linker is the mechanical amplifier, and the stalk is the track-binding domain.The tail, which is not part of the motor domain and is absent from crystal structures, is located at the N-terminal ∼1,400 amino acid residues and involved in cargo binding (gray in Fig. 1, B and E). The next ∼550 residues comprise the “linker” (pink in Fig. 1, B–E), which changes its conformation depending on the nucleotide state (Burgess et al., 2003; Kon et al., 2005). This linker domain was first observed by negative staining EM in combination with single particle analysis of dynein c, an isoform of inner arm dynein from C. reinhardtii flagella (Burgess et al., 2003). According to the crystal structures, the linker is made of bundles of α-helices and lies across the AAA+ head domain, forming a 10-nm-long rod-like structure (Fig. 1, C and D). Recent class averaged images of D. discoideum cytoplasmic dynein show that the linker domain is stiff along its entire length when undocked from the head (Roberts et al., 2012). The head (motor) domain of dynein is composed of six AAA+ (ATPase associated with diverse cellular activities) modules (Neuwald et al., 1999; color-coded in Fig. 1, B–E). Although many AAA+ family proteins are a symmetric homohexamer (Ammelburg et al., 2006), the AAA+ domains of dynein are encoded by a single heavy chain gene and form an asymmetric heterohexamer. Among the six AAA+ domains, hydrolysis at the first AAA domain mainly provides the energy for dynein motility (Imamula et al., 2007; Kon et al., 2012). The hexameric ring has two distinct faces: the linker face and the C-terminal face. The linker face is slightly convex and the linker domain lies across this side (Fig. 1 D, left side). The other side of the ring has the C-terminal domain (Fig. 1 D, right side).The stalk domain of dynein was identified as the microtubule-binding domain (MTBD; Gee et al., 1997). It emanates from the C-terminal face of AAA4 and is composed of antiparallel α-helical coiled-coil domain (yellow in Fig. 1, B–E). The tip of the stalk is the actual MTBD. Interestingly, the crystal structures revealed another antiparallel α-helical coiled coil that emerges from AAA5 (orange in Fig. 1, B–E), and this region is called the buttress (Carter et al., 2011) or strut (Kon et al., 2011), which was also observed as the bifurcation of the stalk by negative-staining EM (Burgess et al., 2003; Roberts et al., 2009). The tip of the buttress/strut is in contact with the middle of the stalk and probably works as a mechanical reinforcement of the stalk.

The chemomechanical cycle of dynein

Based on structural and biochemical data, a putative chemomechanical cycle of dynein is outlined in Fig. 2 (A–E). In the no-nucleotide state, dynein is bound to a microtubule through its stalk domain, and its tail region is bound to cargoes (Fig. 2 A). The crystal structures of yeast dynein are considered to be in this no-nucleotide state. When ATP is bound to the AAA+ head, the MTBD quickly detaches from the microtubule (Fig. 2 B; Porter and Johnson, 1983). The ATP binding also induces “hinging” of the linker from the head (Fig. 2 C). According to the biochemical analysis of recombinant D. discoideum dynein (Imamula et al., 2007), the detachment from the microtubule (Fig. 2, A and B) is faster than the later hinging (Fig. 2, B and C). As a result of these two reactions, the head rotates or shifts toward the minus end of the microtubule (for more discussion about “rotate” versus “shift” see the “Dyneins in the axoneme” section) and the MTBD steps forward. The directionality of stepping seems to be mainly determined by the MTBD, because the direction of dynein movement does not change even if the head domain is rotated relative to the microtubule by insertion or deletion of the stalk (Carter et al., 2008). In the presence of ADP and vanadate, dynein is considered to be in this state (Fig. 2 C).Open in a separate windowFigure 2.Presumed chemomechanical cycle and stepping of dynein. (A–E) Chemomechanical cycle of dynein. The pre- and post-power stroke states are also called the primed and unprimed states, respectively. The registries of the stalk coiled coil are denoted as α and β according to Gibbons et al. (2005). (F and G) Processive movement of kinesin (F) and dynein (G). (F) Hand-over-hand movement of kinesin. A step by one head (red) is always followed by the step of another head (green). The stepping of kinesin is on one protofilament of microtubule. (G) Presumed stepping of dynein. The step size varies and the interhead separation can be large. A step by one head (red) is not always flowed by the step of another head (green). (H) A model of strain-based dynein ATPase activation. (G, top) Without strain, the gap between the AAA1 and AAA2 is open and the motor domain cannot hydrolyze ATP. (G, bottom) Under a strain imposed between MTBD and tail (thin black arrows), the gap becomes smaller (thick black arrows) and turns on ATP hydrolysis by dynein.After the MTBD rebinds to the microtubule at the forward site (Fig. 2 D), release of hydrolysis products from the AAA+ head is activated (Holzbaur and Johnson, 1989) and the hinged linker goes back to the straight conformation (Fig. 2 E; Kon et al., 2005). The crystal structure of D. discoideum dynein is considered to be in the state after phosphate release and before ADP release. This straightening of the linker is considered to be the power-generating step and brings the cargo forward relative to the microtubule.

The MTBD of dynein

As outlined in Fig. 2, the nucleotide state of the head domain may control the affinity of the MTBD to the microtubule. Conversely, the binding of the MTBD to the microtubule should activate the ATPase activity of the head domain. This two-way communication is transmitted through the simple ∼17-nm-long α-helical coiled-coil stalk and the buttress/strut, and its structural basis has been a puzzling question.Currently there are three independent MTBD atomic structures in the Protein Data Bank (PDB): One of the crystal structures of the D. discoideum dynein motor domain contains the MTBD (Fig. 3 A), and Carter et al. (2008) crystallized the MTBD of mouse cytoplasmic dynein fused with a seryl tRNA-synthetase domain (Fig. 3 C). The MTBD structure of C. reinhardtii axonemal dynein was solved using nuclear magnetic resonance (PDB accession no. 2RR7; Fig. 3 B). The MTBD is mostly composed of α-helices and the three structures are quite similar to each other within the globular MTBD (Fig. 3). Note that dynein c has an additional insert at the MTBD–microtubule interface (Fig. 3 B, inset), whose function is not yet clear. The three structures start to deviate from the junction between the MTBD and the coiled-coil region of the stalk (Fig. 3, A–C, blue arrowheads). Particularly, one of the stalk α-helix (CC2) in D. discoideum dynein motor domain appears to melt at the junction with the MTBD (Fig. 3 A, red arrowhead). This structural deviation suggests that the stalk coiled coil at the junction is flexible, which is consistent with the observation by EM (Roberts et al., 2009).Open in a separate windowFigure 3.Atomic models of the MTBD of dynein. (A) D. discoideum cytoplasmic dynein (PDB accession no. 3VKH). (B) C. reinhardtii dynein c (PDB accession no. 2RR7). The inset shows the side view, highlighting the dynein c–specific insert. (C) Mouse cytoplasmic dynein (PDB accession no. 3ERR). (D) Mouse cytoplasmic dynein fit to the MTBD–microtubule complex derived from cryo-EM (PDB accession no. 3J1T). All the MTBD structures were aligned using least square fits and color-coded with a gradient from the N to C terminus. CC1, coiled coil helix 1; CC2, coiled coil helix 2. The blue arrowheads points to the junction between MTBD and the stalk, where a well-conserved proline residue (colored pink) is located. In C and D, two residues (isoleucine 3269 and leucine 3417) are shown as spheres. The two residues form hydrophobic contacts in the β-registry (C), whereas they are separated in the α-registry (D) because of the sliding between the two α-helices (blue and red arrows). Conformational changes observed in the mouse dynein MTBD in complex with a microtubule by cryo-EM are shown by black arrows. Note that the cryo-EM density map does not have enough resolution to observe sliding between CC1 and CC2. The sliding was modeled based on targeted molecular dynamics (Redwine et al., 2012).Various mechanisms have been proposed to explain how the affinity between the MTBD and a microtubule is controlled. Gibbons et al. (2005) proposed “the helix-sliding hypothesis” (for review see Cho and Vale, 2012). In brief, this hypothesis proposes that the sliding between two α-helices CC1 and CC2 (Fig. 3, C and D; blue and red arrows) may control the affinity of this domain to a microtubule. When Gibbons’s classification (Gibbons et al., 2005) of the sliding state is applied to the three MTBD structures, the stalk in the D. discoideum dynein motor domain is in the “α-registry” state (not visible in Fig. 3 A because of the melting of CC2), which corresponds to the strong binding state. However, the mouse cytoplasmic and C. reinhardtii axonemal MTBDs have the “β-registry” stalk (Fig. 3 C), which corresponds to the weak binding state.To observe conformational changes induced by the α-registry and/or microtubule binding, Redwine et al. (2012) solved the structure of mouse dynein MTBD in complex with a microtubule at 9.7-Å resolution using cryo-EM and single particle analysis. The MTBD was coupled with seryl tRNA-synthetase to fix the stalk helix in the α-registry. At this resolution, α-helices are visible, and they used molecular dynamics to fit the crystal structure of mouse MTBD (β-registry) to the cryo-EM density map. According to this result, the first helix H1 moves ∼10 Å to a position that avoids a clash with the microtubule (Fig. 3 D, black arrows). This also induces opening of the stalk helix (CC1). Together with mutagenesis and single-molecule motility assays, Redwine et al. (2012) proposed that this new structure represents the strong binding state. Currently, it is not clear why the MTBD structure of D. discoideum dynein motor domain (α-registry, Fig. 3 A) is not similar to the new α-registry mouse dynein MTBD, and this problem needs to be addressed by further studies.

Structures around the first ATP binding site

Another central question about motor proteins is how Ångstrom-scale changes around the nucleotide are amplified to generate steps >8 nm. For dynein, the interface between the first nucleotide-binding pocket and the linker seem to be the key force-generating element (Fig. 4). The crystal structures of dynein give us clues about how nucleotide-induced conformational changes may be transmitted to and amplified by the linker domain.Open in a separate windowFigure 4.Structures around the first ATP binding site. (A) Schematic domain structure of the head domain. Regions contacting the linker domain are colored purple. (B) AAA submodules surrounding the first nucleotide-binding pocket (PDB accession no. 3VKG, chain A). The linker is connected to AAA1 domain by the “N-loop.” To highlight that the two finger-like structures are protruding, the shadow of the atomic structure has been cast on the plane parallel to the head domain. (C) Interaction between the linker and the two finger-like structures. The pink arrowhead points to the hinge-like structure of the linker. The pink numbers indicates the subdomain of the linker.The main ATP catalytic site is located between AAA1 and AAA2 (Fig. 4, A and B). There are four ADP molecules in the D. discoideum dynein crystal structures, but the first ATP binding site alone drives the microtubule-activated ATPase activity, based on biochemical experiments on dyneins whose ATP binding sites were mutated (Kon et al., 2012).One AAA+ module is composed of a large submodule and a small α submodule (Fig. 4 B). The large α/β submodule is located inside of the ring and the small α submodule is located outside. The large submodule bulges toward the linker face, and the overall ring forms a dome-like shape (Fig. 1 D).The main ATP catalytic site is surrounded by three submodules: AAA1 large α/β, AAA1 small α, and AAA2 large α/β (Fig. 4, A and B). Based on the structural changes of other AAA+ proteins (Gai et al., 2004; Suno et al., 2006; Wendler et al., 2012), the gap between AAA1 and AAA2 modules is expected to open and close during the ATPase cycle.In fact, the size of the gap varies among the dynein crystal structures. The crystal structures of yeast dyneins show a larger gap between AAA1 and AAA2, which might be the reason why no nucleotide was found in the binding pocket. Although Schmidt et al. (2012) soaked the crystals in a high concentration of various nucleotides (up to 25 mM of ATP), no electron densities corresponding to the nucleotide were observed at the first ATP binding site. Among dynein crystal structures, one of D. discoideum dynein (PDB accession no. 3VKH, chain A) has the smallest gap, but it is still considered to be in an “open state” because the arginine finger in the AAA2 module (Fig. 4 B, red) is far from the phosphates of ADP. Because the arginine finger is essential for ATP hydrolysis in other AAA+ proteins (Ogura et al., 2004), the gap is expected to close and the arginine finger would stabilize the negative charge during the transition state of ATP hydrolysis.The presumed open/close conformational change between AAA1 and AAA2 would result in the movement of two “finger-like” structures protruding from the AAA2 large α/β submodule (Fig. 4 B). The two finger-like structures are composed of the H2 insert β-hairpin and preSensor I (PS-I) insert. In D. discoideum dynein crystal structure, the two finger-like structures are in contact with the “hinge-like cleft” of the linker (Fig. 4 C, pink arrowhead). The hinge-like cleft is one of the thinnest parts of the linker, where only one α-helix is connecting between the linker subdomains 2 and 3.In the yeast crystal structures, which have wider gaps between AAA1 and AAA2, the two finger-like structures are not in direct contact with the linker and separated by 18 Å. Instead, the N-terminal region of the linker is in contact with the AAA5 domain (Fig. 4 A). To test the functional role of the linker–AAA5 interaction, Schmidt et al. (2012) mutated a residue involved in the interaction (Phe3446) and found that the mutation resulted in severe motility defects, showing strong microtubule binding and impaired ATPase activities. In D. discoideum dynein crystals, there is no direct interaction between AAA5 and the linker, which suggests that the gap between AAA1 and AAA2 may influence the interaction between the head and linker domain. The contact between the linker and AAA5 may also influence the gap around AAA5, because the gap between AAA5 and AAA6 is large in yeast dynein crystal, whereas the one between AAA4 and AAA5 is large in D. discoideum dynein.The movement of two finger-like structures would induce remodeling of the linker. According to the recent cryo-EM 3D reconstructions of cytoplasmic dynein and axonemal dynein c (Roberts et al., 2012), the linker is visible across the head and there is a large gap between AAA1 and AAA2 in the no-nucleotide state. This linker structure is considered to be the “straight” state (Fig. 2, A and E). In the presence of ADP vanadate, the gap between AAA1 and AAA2 is closed and the N-terminal region of linker is near AAA3, which corresponds to the pre-power stroke “hinged” state (Fig. 2, C and D). The transition from the hinged state to the straight state of the linker is considered to be the force-generating step of dynein.

Processivity of dynein

As the structure of dynein is different from other motor proteins, dynein’s stepping mechanism is also distinct. Both dynein and kinesin are microtubule-based motors and move processively. Based on the single molecule tracking experiment with nanometer accuracy (Yildiz et al., 2004), it is widely accepted that kinesin moves processively by using its two motor domain alternately, called the “hand-over-hand” mechanism. To test whether dynein uses a similar mechanism to kinesin or not, recently Qiu et al. (2012) and DeWitt et al. (2012) applied similar single-molecule approaches to dynein.To observe the stepping, the two head domains of yeast recombinant cytoplasmic dynein were labeled with different colors and the movement of two head domains was tracked simultaneously. If dynein walks by the hand-over-hand mechanism, the step size would be 16 nm and the stepping of one head domain would always be followed by the stepping of another head domain (alternating pattern), and the trailing head would always take a step (Fig. 2 F). Contrary to this prediction, both groups found that the stepping of the head domains is not coordinated when the two head domains are close together. These observations indicated that the chances of a leading or trailing head domain stepping are not significantly different (Fig. 2 G; DeWitt et al., 2012; Qiu et al., 2012).This stepping pattern predicts that the distance between the head domains can be long. In fact, the distance between the two head domains is on average ∼18 ± 11 nm (Qiu et al., 2012) or 28.4 ± 10.7 nm (DeWitt et al., 2012), and as large as ∼50 nm (DeWitt et al., 2012). When the two head domains are separated, there is a tendency where stepping of the trailing head is preferred over that of the forward head.In addition, even though the recombinant cytoplasmic dynein is a homodimer, the two heavy chains do not function equally. While walking along the microtubule, the leading head tends to walk on the right side, whereas the trailing head walks on the left side (DeWitt et al., 2012; Qiu et al., 2012). This arrangement suggests that the stepping mechanism is different between the two heads. In fact, when one of the two dynein heavy chains is mutated to abolish the ATPase activity at AAA1, the heterodimeric dynein still moves processively (DeWitt et al., 2012), with the AAA1-mutated dynein heavy chain remaining mostly in the trailing position. This result clearly demonstrates that allosteric communication between the two AAA1 domains is not required for processivity of dynein. It is likely that the mutated head acts as a tether to the microtubule, as it is known that wild-type dynein can step processively along microtubules under external load even in the absence of ATP (Gennerich et al., 2007).These results collectively show that dynein moves by a different mechanism from kinesin. It is likely that the long stalk and tail allow dynein to move in a more flexible manner.

Dyneins in the axoneme

As mentioned in the introduction, >10 dyneins work in motile flagella and cilia. The core of flagella and cilia is the axoneme, which is typically made of nine outer doublet microtubules and two central pair microtubules (“9 + 2,” Fig. 5 A). The axonemes are found in various eukaryotic cells ranging from the single-cell algae C. reinhardtii to human. Recent extensive cryo-electron tomography (cryo-ET) in combination with genetics revealed the highly organized and complex structures of axonemes that are potentially important for regulating dynein activities (Fig. 5, C and D; Nicastro et al., 2006; Bui et al., 2008, 2009, 2012; Heuser et al., 2009, 2012; Movassagh et al., 2010; Lin et al., 2012; Carbajal-González et al., 2013; Yamamoto et al., 2013).Open in a separate windowFigure 5.Arrangement of axonemal dyneins. (A) The schematic structure of the motile 9 + 2 axoneme, viewed from the base of flagella. (B) Quasi-planar asymmetric movement of the 9 + 2 axoneme typically observed in trachea cilia or in C. reinhardtii flagella. (C and D) 3D structure of a 96-nm repeat of doublet microtubules in the distal/central region of C. reinhardtii flagella (EMDB-2132; Bui et al., 2012). N-DRC, the nexin-dynein regulatory complex; ICLC, intermediate chain/light chain complex. Inner arm dynein subspecies are labeled according to Bui et al. (2012) and Lin et al. (2012). To avoid the confusion with the linker domain of dynein, the structures connecting between outer and inner arm dyneins are labeled as “connecters,” which are normally called “linkers.” Putative ATP binding sites of outer arm dynein determined by biotin-ADP (Oda et al., 2013) are indicated by orange circles. The atomic structure of cytoplasmic dynein is placed into the β-heavy chain of outer arm dynein and its enlarged view is shown in the inset. (D) Two doublet microtubules, viewed from the base of flagella.The basic mechanochemical cycles of axonemal dyneins are believed to be shared with cytoplasmic dynein. Dynein c is an inner arm dynein of C. reinhardtii and used extensively to investigate the conformational changes of dynein, as shown in Fig. 2 (A–E), by combining EM and single-particle analysis (Burgess et al., 2003; Roberts et al., 2012). Structural changes of axonemal dyneins complexed with microtubules are also observed by quick-freeze and deep-etch EM (Goodenough and Heuser, 1982; Burgess, 1995), cryo-EM (Oda et al., 2007), negative-staining EM (Ueno et al., 2008), and cryo-ET (Movassagh et al., 2010). According to these studies, the AAA+ head domains are constrained near the A-tubule in the no-nucleotide state. In the presence of nucleotide, the head domains move closer to the B-tubule and/or the minus end of microtubule, and their appearance becomes heterogeneous, which is consistent with the observation of isolated dynein c that shows greater flexibility between tail and stalk in the ADP/vanadate state (Burgess et al., 2003).One of the controversies about the structural changes of axonemal dyneins is whether their stepping involves “rotation” or “shift” of the head (Fig. 2, B to D). The stalk angle relative to the microtubule seems to be a constant ∼60° irrespective of the nucleotide state (Ueno et al., 2008; Movassagh et al., 2010). This angle is similar to the angle obtained from cryo-EM study of the MTBD–microtubule complex (Redwine et al., 2012). Based on these observations, Ueno et al. (2008) and Movassagh et al. (2010) hypothesize that the “shift” of the head pulls the B-microtubule toward the distal end. However, Roberts et al. (2012) propose that the “rotation” of head and stalk is involved in the stepping based on the docking of dynein c head into an averaged flagella tomogram obtained by Movassagh et al. (2010). This issue needs to be resolved by more reliable and high-resolution data, but these two models may not be mutually exclusive. For example, averaged tomograms may be biased toward the microtubule-bound stalk because tomograms are aligned using microtubules.To interpret these structural changes of axonemal dyneins, docking atomic models of dynein is necessary. According to Roberts et al. (2012), the linker face of inner arm dynein c is oriented outside of axoneme (Fig. 5 D). For outer arm dyneins, we used cryo-EM in combination with biotin-ADP-streptavidin labeling and showed that the ATP binding site, most likely AAA1, is on the left side of the AAA+ head (Fig. 5 C; Oda et al. (2013)). Assuming that the stalks extend out of the plane toward the viewer, the linker face of outer arm dynein is oriented outside of axoneme (Fig. 5 C, inset; and Fig. 5 D). If it were the opposite, the AAA1 would be located on the right side of the AAA+ head. In summary, both inner and outer arm dynein seem to have the same arrangement, with their linker face oriented outside of the axoneme (Fig. 5 D).A unique characteristic of axonemal dyneins is that these dyneins are under precise temporal and spatial control. To generate a planer beating motion (Fig. 5 B), dyneins should be asymmetrically controlled, because the dyneins located on doublets 2–4 drive the effective stroke, whereas the ones on doublets 6–8 drive the recovery stroke (Fig. 5 A). Based on the cryo-ET observation of axonemes, Nicastro et al. (2006) proposed that “linkers” between dyneins provide hard-wiring to coordinate motor activities. Because the linkers in axonemes are distinct structures from the linker domain of dynein, for clarity, here we call them “connecters.” According to the recent cryo-ET of proximal region of C. reinhardtii flagella (Bui et al., 2012), there are in fact asymmetries among nine doublets that are localized to the connecters between outer and inner arm dynein, called the outer-inner dynein (OID) connecters (Fig. 5, A and C). Recently we identified that the intermediate chain 2 (IC2) of outer arm dynein is a part of the OID connecters, and a mutation of the N-terminal region of IC2 affects functions of both outer and inner arm dyneins (Oda et al., 2013), which supports the idea that the connecters between dyneins are involved in axonemal dynein regulation.

Closing remarks

Thanks to the crystal structures, we can now design and interpret experiments such as single molecule assays and EM based on the atomic models of dynein. Our understanding of the molecular mechanism and cellular functions of dyneins will be significantly advanced by these experiments in the near future.One important direction of dynein research is to understand the motor mechanisms closer to the in vivo state. For example, the step sizes of cytoplasmic dynein purified from porcine brain is ∼8 nm independent of load (Toba et al., 2006). This result suggests that intermediate and light chain bound to the dynein heavy chain may modulate the motor activity of dynein. To address such questions, Trokter et al. (2012) reconstituted human cytoplasmic dynein complex from recombinant proteins, although the reconstituted dynein did not show robust processive movement. Further studies are required to understand the movement of cytoplasmic dynein. Similarly, axonemal dyneins should also be studied using mutations in a specific gene that does not affect the overall flagella structure, rather than depending on null mutants that cause the loss of large protein complexes.Detailed full chemomechanical cycle of dynein and its regulation are of great importance. Currently, open/closed states of the gap between AAA1 and AAA2 are not clearly correlated with the chemomechanical cycle of dynein. Soaking dynein crystal with nucleotides showed that the presence of ATP alone is not sufficient to close the gap, at least in the crystal (Schmidt et al., 2012). This result suggests that other factors such as a conformational change of the linker are required. For other motors, ATP hydrolysis is an irreversible chemical step, which is often “gated” by strain. In the case of kinesin, ATP is hydrolyzed by a motor domain only when a forward strain is applied by the other motor domain through the neck linker (Cross, 2004; Kikkawa, 2008). A similar strain-based gating mechanism may play important roles in controlling the dynein ATPase. Upon MTBD binding to the forward binding site, a strain between MTBD and tail would be applied to the dynein molecule. The Y-shaped stalk and strut/buttress under the strain would force the head domain to close the gap between AAA4 and AAA5 (Fig. 2 H). Similarly, the linker under the strain would be hooked onto the two finger-like structures and close the gap between AAA1 and AAA2 (Fig. 2 H). The gap closure then triggers ATP hydrolysis by dynein. This strain-based gating of dynein is consistent with the observation that the rate of nonadvancing backward steps, which would depend on ATP hydrolysis, is increased by load applied to dynein (Gennerich et al., 2007). To explain cilia and flagella movement, the geometric clutch hypothesis has been proposed (Lindemann, 2007), which contends that the forces transverse (t-force) to the axonemal axis act on the dynein to regulate dynein activities. In the axoneme, dynein itself can be the sensor of the t-force by the strain-based gating mechanism. Further experiments are required to test this idea, but the strain-based gating could be a shared property of biological motors.  相似文献   

18.
BACKGROUND: Cytoplasmic dynein is the molecular motor responsible for most retrograde microtubule-based vesicular transport. In vitro single-molecule experiments suggest that dynein function is not as robust as that of kinesin-1 or myosin-V because dynein moves only a limited distance (approximately 800 nm) before detaching and can exert a modest (approximately 1 pN) force. However, dynein-driven cargos in vivo move robustly over many microns and exert forces of multiple pN. To determine how to go from limited single-molecule function to robust in vivo transport, we began to build complexity in a controlled manner by using in vitro experiments. RESULTS: We show that a single cytoplasmic dynein motor frequently transitions into an off-pathway unproductive state that impairs net transport. Addition of a second (and/or third) dynein motor, so that cargos are moved by two (or three) motors rather than one, is sufficient to recover several properties of in vivo motion; such properties include long cargo travels, robust motion, and increased forces. Part of this improvement appears to arise from selective suppression of the unproductive state of dynein rather than from a fundamental change in dynein's mechanochemical cycle. CONCLUSIONS: Multiple dyneins working together suppress shortcomings of a single motor and generate robust motion under in vitro conditions. There appears to be no need for additional cofactors (e.g., dynactin) for this improvement. Because cargos are often driven by multiple dyneins in vivo, our results show that changing the number of dynein motors could allow modulation of dynein function from the mediocre single-dynein limit to robust in vivo-like dynein-driven motion.  相似文献   

19.
During mitosis in budding yeast, dynein moves the mitotic spindle into the mother-bud neck. We have proposed an offloading model to explain how dynein works. Dynein is targeted to the dynamic plus end of a cytoplasmic microtubule, offloads to the cortex, becomes anchored and activated, and then pulls on the microtubule. Here, we perform functional studies of dynein intermediate chain (IC) and light intermediate chain (LIC). IC/Pac11 and LIC/Dyn3 are both essential for dynein function, similar to the heavy chain (HC/Dyn1). IC and LIC are targeted to the distal plus ends of dynamic cytoplasmic microtubules, as is HC, and their targeting depends on HC. Targeting of HC to the plus end depends on IC, but not LIC. IC also localizes as stationary dots at the cell cortex, the presumed result of offloading in our model, as does HC, but not LIC. Localization of HC to cortical dots depends on both IC and LIC. Thus, the IC and LIC accessory chains have different but essential roles in dynein function, providing new insight into the offloading model.  相似文献   

20.
kar9 was originally identified as a bilateral karyogamy mutant, in which the two zygotic nuclei remained widely separated and the cytoplasmic microtubules were misoriented (Kurihara, L.J., C.T. Beh, M. Latterich, R. Schekman, and M.D. Rose. 1994. J. Cell Biol. 126:911–923.). We now report a general defect in nuclear migration and microtubule orientation in kar9 mutants. KAR9 encodes a novel 74-kD protein that is not essential for life. The kar9 mitotic defect was similar to mutations in dhc1/dyn1 (dynein heavy chain gene), jnm1, and act5. kar9Δ dhc1Δ, kar9Δ jnm1Δ, and kar9Δ act5Δ double mutants were synthetically lethal, suggesting that these genes function in partially redundant pathways to carry out nuclear migration. A functional GFP-Kar9p fusion protein localized to a single dot at the tip of the shmoo projection. In mitotic cells, GFP-Kar9p localized to a cortical dot with both mother–daughter asymmetry and cell cycle dependence. In small-budded cells through anaphase, GFP-Kar9p was found at the tip of the growing bud. In telophase and G1 unbudded cells, no localization was observed. By indirect immunofluorescence, cytoplasmic microtubules intersected the GFP-Kar9p dot. Nocodazole experiments demonstrated that Kar9p's cortical localization was microtubule independent. We propose that Kar9p is a component of a cortical adaptor complex that orients cytoplasmic microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号