首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elevated circulating levels of saturated free fatty acids (sFFAs; e.g. palmitate) are known to provoke inflammatory responses and cause insulin resistance in peripheral tissue. By contrast, mono- or poly-unsaturated FFAs are protective against sFFAs. An excess of sFFAs in the brain circulation may also trigger neuroinflammation and insulin resistance, however the underlying signaling changes have not been clarified in neuronal cells. In the present study, we examined the effects of palmitate on mitochondrial function and viability as well as on intracellular insulin and nuclear factor-κB (NF-κB) signaling pathways in Neuro-2a and primary rat cortical neurons. We next tested whether oleate preconditioning has a protective effect against palmitate-induced toxicity. Palmitate induced both mitochondrial dysfunction and insulin resistance while promoting the phosphorylation of mitogen-activated protein kinases and nuclear translocation of NF-κB p65. Oleate pre-exposure and then removal was sufficient to completely block subsequent palmitate-induced intracellular signaling and metabolic derangements. Oleate also prevented ceramide-induced insulin resistance. Moreover, oleate stimulated ATP while decreasing mitochondrial superoxide productions. The latter were associated with increased levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Inhibition of protein kinase A (PKA) attenuated the protective effect of oleate against palmitate, implicating PKA in the mechanism of oleate action. Oleate increased triglyceride and blocked palmitate-induced diacylglycerol accumulations. Oleate preconditioning was superior to docosahexaenoic acid (DHA) or linoleate in the protection of neuronal cells against palmitate- or ceramide-induced cytotoxicity. We conclude that oleate has beneficial properties against sFFA and ceramide models of insulin resistance-associated damage to neuronal cells.  相似文献   

2.
Free fatty acid (FFA)-bound albumin, which is filtrated through the glomeruli and reabsorbed into proximal tubular cells, is one of the crucial mediators of tubular damage in proteinuric kidney disease. In this study, we examined the role of each kind of FFA on renal tubular damage in vitro and tried to identify its molecular mechanism. In cultured proximal tubular cells, a saturated fatty acid, palmiate, increased the expression of monocyte chemoattractant protein-1 (MCP-1), but this effect was abrogated by co-incubation of monounsaturated fatty acid, oleate, or ω-3 polyunsaturated fatty acid, eicosapentaenoic acid (EPA). Palmitate led to intracellular accumulation of diacylglycerol (DAG) and subsequent activation of protein kinase C protein family. Among the several PKC inhibitors, rottlerin, a PKCθ inhibitor, prevented palmitate-induced MCP-1 expression via inactivation of NFB pathway. Overexpression of dominant-negative PKCθ also inhibited palmitate-induced activation of MCP-1 promoter. Furthermore, palmitate enhanced PKCθ-dependent mitochondrial apoptosis, which was also prevented by co-incubation with oleate or EPA through restoration of pro-survival Akt pathway. Moreover, oleate and EPA inhibited palmitate-induced PKCθ activation through the conversion of intracellular DAG to triglyceride with the restoration of diacylglycerol acyltransferase 2 expression. These results suggest that oleate and EPA have protective effects against the palmitate-induced renal tubular cell damage by inhibiting PKCθ activation.  相似文献   

3.
The effect of individual unsaturated fatty acids on the release of tumour necrosis factor (TNF) and interleukin 6 (IL6) was investigated in thioglycollate — induced rat peritoneal macrophages. The intracellular mechanisms associated with the changes of cytokine production in response to fatty acids were also studied. Incubation of macrophages with 100 M docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) increased TNF (21% and 15% respectively) and IL6 (69% and 40% respectively) production. Linoleic acid (LA) diminished TNF production by 16%. At 100 M oleic acid (OA), LA and EPA concentration an increase in macrophage adenylate cyclase activity (110%, 72% and 39% respectively) and a decrease (14%) in the presence of DHA was observed. PGE2 production in the presence of 100 M DHA was reduced by 36%, whereas in the presence of 100 M LA an increase (75%) was observed. Phospholipase A2 (PLA2) activity was also found to be modified in the presence of EPA and DHA at 50 M (20% and 60% respectively) and 100 M (34% and 62% respectively) concentrations. The activities of both protein kinase A (PKA) and protein kinase C (PKC) were effected by the different fatty acids. At 50 M all fatty acids suppressed PKA activity except OA which enhanced PKA activity by 14%. At 100 M fatty acid concentration, EPA suppressed PKA activity by 40%. PKC activity was enhanced by LA and OA, by 18% and 21% respectively. However, at 100 M EPA and DHA, PKC activity was suppressed by 37% and 17% respectively, whereas PKC activity was enhanced by 146% in the presence of 100 M LA. These results show for the first time that unsaturated fatty acids have an effect on macrophage PLA2 activity and that PGE2 may be a potent modulator of IL6 production. From these studies it is tempting to speculate that macrophage TNF and IL6 release may, in part, occur via a PKC and PKA independent pathway and that PLA2 activity and PGE2 concentration are inversely related to production of TNF and IL6.  相似文献   

4.
Evidence suggests that the role of autophagy in tumorigenesis is context dependent. Using genetically engineered mouse models (GEMMs) for human non-small-cell lung cancer (NSCLC), we found that deletion of the essential autophagy gene, Atg7, in KRASG12D-driven NSCLC inhibits tumor growth and converts adenomas and adenocarcinomas to benign oncocytomas characterized by the accumulation of respiration-defective mitochondria. Atg7 is required to preserve mitochondrial fatty acid oxidation (FAO) to maintain lipid homeostasis upon additional loss of Trp53 in NSCLC. Furthermore, cell lines derived from autophagy-deficient tumors depend on glutamine to survive starvation. This suggests that autophagy is essential for the metabolism, growth, and fate of NSCLC.  相似文献   

5.
Lactosylceramide [LacCer; β-Gal-(1-4)-β-Glc-(1-1)-Cer] has been shown to contain very long fatty acids that specifically modulate neutrophil properties. The interactions between LacCer and proteins and their role in cell signaling processes were assessed by synthesizing two molecular species of azide-photoactivable tritium-labeled LacCer having acyl chains of different lengths. The lengths of the two acyl chains corresponded to those of a short/medium and very long fatty acid, comparable to the lengths of stearic and lignoceric acids, respectively. These derivatives, designated C18-[3H]LacCer-(N3) and C24-[3H]LacCer-(N3), were incorporated into the lipid rafts of plasma membranes of neutrophilic differentiated HL-60 (D-HL-60) cells. C24-[3H]LacCer-(N3), but not C18-[3H]LacCer-(N3), induced the phosphorylation of Lyn and promoted phagocytosis. Incorporation of C24-[3H]LacCer-(N3) into plasma membranes, followed by illumination, resulted in the formation of several tritium-labeled LacCer-protein complexes, including the LacCer-Lyn complex, into plasma membrane lipid rafts. Administration of C18-[3H]LacCer-(N3) to cells, however, did not result in the formation of the LacCer-Lyn complex. These results suggest that LacCer derivatives mimic the biological properties of natural LacCer species and can be utilized as tools to study LacCer-protein interactions, and confirm a specific direct interaction between LacCer species containing very long fatty acids, and Lyn protein, associated with the cytoplasmic layer via myristic/palmitic chains.  相似文献   

6.
Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid and carbohydrate metabolism.  相似文献   

7.
Interleukin-2 is a key immuno-regulatory cytokine whose actions are mediated by three different cell surface receptors: the alpha, beta and the "common gamma" (gamma(c)) chains. We have undertaken a complete thermodynamic characterization of the stepwise assembly cycle for multiple possible combinations of the receptor-ligand, and receptor-receptor interactions that are necessary for formation of the high-affinity IL-2/alphabetagamma(c) signaling complex. We find an entropically favorable high affinity interaction between IL-2 and its alpha receptor, a moderately entropically favorable low affinity interaction between IL-2 and its beta receptor, and no interaction between IL-2 and the shared receptor, gamma(c). Formation of the stable intermediate trimolecular complexes of IL-2 with alpha and beta receptors, as well as IL-2 with beta and gamma(c) receptors proceeds through enthalpy-entropy compensation mechanisms. Surprisingly, we see a moderate affinity interaction between the unliganded receptor alpha and beta chains, suggesting that a preformed alphabeta complex may serve as the initial interaction complex for IL-2. Reconstitution of the IL-2/Ralphabetagamma(c) high-affinity quaternary signaling complex shows it to be assembled through cooperative energetics to form a 1:1:1:1 assembly. Collectively, the favorable entropy of the bimolecular interactions appears to be offset by the loss in rigid body entropy of the receptor components in the higher-order complexes, but overcome by the formation of increasingly enthalpically favorable composite interfaces. This enthalpic mechanism utilized by gamma(c) contrasts with the favorable entropic mechanism utilized by gp130 for degenerate cytokine interaction. In conclusion, we find that several energetically redundant pathways exist for formation of IL-2 receptor signaling complexes, suggesting a more complex equilibrium on the cell surface than has been previously appreciated.  相似文献   

8.
In this study, the effect of oleic acid (50 microM) on gene expression of Jurkat cells (human T lymphocytes cell line) was examined using the suppressive subtractive hybridization approach. This technique allowed us to identify genes with higher or lower expression after cell treatment with oleic acid as compared to untreated cells. Oleic acid upregulated the expression of the translation elongation factor alpha 1 and ATP synthase 8 and downregulated gp96 (human tumor rejection antigen gp96), heat-shock protein 60 and subtilisin-like protein 4. These results suggest that oleic acid, at plasma physiological concentration, can regulate the expression of important genes to maintain the machinery that ensures cell functioning.  相似文献   

9.
10.
Many breast cancer cells express aberrantly activated receptor tyrosine kinases and are associated with deregulated phosphorylation of Akt (PKB). They are also often associated with a high level of free monounsaturated (MUFA) and saturated (SFA) fatty acids. We studied the effect of DHA and other polyunsaturated fatty acids (PUFAs) on these anomalies in a human breast cancer cell line, MDA-MB-453. Inhibitors of the Akt T308 kinase (PDK1) or S473 kinase (mTORC2, DNA-dependent protein kinase and integrin-linked kinase) and combinations of two of them incompletely inhibited, or even enhanced, the phosphorylation in this cell line. In contrast, it was found that DHA as well as other PUFAs inhibited Akt phosphorylation on T308 after 24 h. These PUFAs also blocked phosphorylation of S473, although certain omega-6 PUFAs were ineffective. After 48 h, only DHA inhibited Akt phosphorylation on the both residues. DHA, and other PUFAs though less efficiently, also elevated the expression of a mitochondrial enzyme, 2,4-dienoyl-CoA reductase, which catalyzes process necessary for β-oxidation of PUFAs. These PUFAs were present in the cells at high concentrations and reduced the amount of free and phospholipid-bound MUFAs. DHA most efficiently blocked deregulated cell proliferation while the effects of other PUFAs were moderate. These results suggest that DHA suppressed the growth of the cancer cell through its specifically persistent block of Akt phosphorylation in conjunction with modulation of fatty acid metabolism.  相似文献   

11.
12.
13.
龙健儿  贺力强  蔡霞 《生命科学》2005,17(5):439-444
胰岛素样生长因子-2受体(insulin-like growth factor-2 receptor,IGF-2r)和非阳离子依赖型甘露糖-6-磷酸受体(cation-independent mannose-6-phosphate receptor,CI-MPR)为同一分子,属多结构域跨膜糖蛋白。IGF.2r与阳离子依赖型M6P受体(cation-dependent mannose-6-phosphotase receptor,CD,MPR)共同介导溶酶体酶的分选和转运过程,对溶酶体的形成起重要作用。IGF-2/M6P受体除能与溶酶体酶、TGF-β前体等M6P配体结合外,还能与非糖基化的IGF-2、视黄酸等作用,调节蛋白质的转运和跨膜信号传导等活动。IGF-2r为父源性印迹(paternal imprinted)基因,基因的印迹、表达受基因印迹控制区(imprinting control region,ICR)的甲基化差异修饰所调控。IGF-2r基因表达缺失出现胎儿肥大、心脏和胎盘发育不全、围产期死亡等异常现象,证明IGF-2r在胚胎发育过程中起重要作用。  相似文献   

14.
Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism.  相似文献   

15.
Fatty acid transport proteins (FATPs) are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. Whereas some FATP1 translocates to the plasma membrane in response to insulin, the majority of FATP1 remains within intracellular structures and bioinformatic and immunofluorescence analysis of FATP1 suggests the protein primarily resides in the mitochondrion. To evaluate potential roles for FATP1 in mitochondrial metabolism, we used a proteomic approach following immunoprecipitation of endogenous FATP1 from 3T3-L1 adipocytes and identified mitochondrial 2-oxoglutarate dehydrogenase. To assess the functional consequence of the interaction, purified FATP1 was reconstituted into phospholipid-containing vesicles and its effect on 2-oxoglutarate dehydrogenase activity evaluated. FATP1 enhanced the activity of 2-oxoglutarate dehydrogenase independently of its acyl-CoA synthetase activity whereas silencing of FATP1 in 3T3-L1 adipocytes resulted in decreased activity of 2-oxoglutarate dehydrogenase. FATP1 silenced 3T3-L1 adipocytes exhibited decreased tricarboxylic acid cycle activity, increased cellular NAD+/NADH, increased fatty acid oxidation, and increased lactate production indicative of altered mitochondrial energy metabolism. These results reveal a novel role for FATP1 as a regulator of tricarboxylic acid cycle activity and mitochondrial function.  相似文献   

16.
Specific fatty acid alterations have been described in the blood and tissues of cystic fibrosis (CF) patients. The principal alterations include decreased levels of linoleic acid (LA) and docosahexaenoic acid (DHA). We investigated the potential mechanisms of these alterations by studying the cellular uptake of LA and DHA, their distribution among lipid classes, and the metabolism of LA in a human bronchial epithelial cell model of CF. CF (antisense) cells demonstrated decreased levels of LA and DHA compared with wild type (WT, sense) cells expressing normal CFTR. Cellular uptake of LA and DHA was higher in CF cells compared with WT cells at 1 h and 4 h. Subsequent incorporation of LA and DHA into most lipid classes and individual phospholipids was also increased in CF cells. The metabolic conversion of LA to n-6 metabolites, including 18:3n-6 and arachidonic acid, was upregulated in CF cells, indicating increased flux through the n-6 pathway. Supplementing CF cells with DHA inhibited the production of LA metabolites and corrected the n-6 fatty acid defect. In conclusion, the evidence suggests that low LA level in cultured CF cells is due to its increased metabolism, and this increased LA metabolism is corrected by DHA supplementation.  相似文献   

17.
Phytol, a branched-chain fatty alcohol, is the naturally occurring precursor of phytanic and pristanic acid, branched-chain fatty acids that are both ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha). To investigate the metabolism of phytol and the role of PPARalpha in its regulation, wild-type and PPARalpha knockout (PPARalpha-/-) mice were fed a phytol-enriched diet or, for comparison, a diet enriched with Wy-14,643, a synthetic PPARalpha agonist. After the phytol-enriched diet, phytol could only be detected in small intestine, the site of uptake, and liver. Upon longer duration of the diet, the level of the (E)-isomer of phytol increased significantly in the liver of PPARalpha-/- mice compared with wild-type mice. Activity measurements of the enzymes involved in phytol metabolism showed that treatment with a PPARalpha agonist resulted in a PPARalpha-dependent induction of at least two steps of the phytol degradation pathway in liver. Furthermore, the enzymes involved showed a higher activity toward the (E)-isomer than the (Z)-isomer of their respective substrates, indicating a stereospecificity toward the metabolism of (E)-phytol. In conclusion, the results described here show that the conversion of phytol to phytanic acid is regulated via PPARalpha and is specific for the breakdown of (E)-phytol.  相似文献   

18.
Considering membranes and membrane components as possible pacemakers of the main processes taking place inside mitochondria, changes in phospholipids or fatty acids could play a central role linking different mechanisms involved in cumulative damage to cell molecules and dysfunction during periods of high stress, such as rapid growth and aging. Changes affecting either lipid class or fatty acid compositions could affect phospholipid and membrane properties and alter mitochondrial function and cell viability. In the present study, mitochondrial oxidative status and mitochondrial membrane phospholipid compositions were analyzed throughout the life-cycle of zebrafish. TBARS content significantly increased in 18-month-old fish while aconitase activity decreased in 24-month-old fish, which have been related with oxidative damage to molecules. Mitochondria-specific superoxide dismutase decreased in 24-month-old animals although this change was not statistically significant. Age affected both mitochondrial phospholipid content and the peroxidation index of most phospholipid classes suggesting that oxidative damage to mitochondrial lipids was occurring.  相似文献   

19.
Elevated levels of saturated fatty acids show a strong cytotoxic effect in liver cells. Sirtuin 3 (SIRT3), a mitochondrially localized member of NAD+‐dependent deacetylase has been shown to protect hepatocytes against the oxidative stress. The role of SIRT3 on the cytotoxicity caused by fatty acids in liver cells is not fully understood. The aim of this study was to evaluate the expression level of SIRT3, oxidative stress, and mitochondrial impairments in human hepatoma HepG2 cells exposed to palmitic acid (PA). Our results showed that PA treatment caused the deposition of lipid droplets and resulted in an increased expression of tumor necrosis factor‐α in a dose‐dependent manner. Excessive accumulation of PA induces the reactive oxygen species formation and apoptosis while dissipating the mitochondrial transmembrane potential. The level of SIRT3 expression in both nuclear and mitochondrial fractions in HepG2 cells was decreased with the increase in PA concentrations. However, in the cytosolic fraction, the SIRT3 was undetectable. In conclusion, our results showed that PA caused an increase in inflammation and oxidative stress in HepG2 cells. The exposure of PA also resulted in the decline in transmembrane potential and an increase in apoptosis. The underexpression of nuclear and mitochondrial SIRT3 by PA suggests that the PA target the process that regulates the stress‐related gene expression and mitochondrial functions.  相似文献   

20.

Background

Investigations concerned the mechanism of HT-29 cells radiosensitization by cis-9,trans-11-conjugated linoleic acid (c9,t11-CLA), a natural component of human diet with proven antitumor activity.

Methods

The cells were incubated for 24 h with 70 μM c9,t11-CLA and then X-irradiated. The following methods were used: gas chromatography (incorporation of the CLA isomer), flow cytometry (cell cycle), cloning (survival), Western blotting (protein distribution in membrane fractions), and pulse-field gel electrophoresis (rejoining of DNA double-strand breaks). In parallel, DNA-PK activity, γ-H2AX foci numbers and chromatid fragmentation were estimated. Gene expression was analysed by RT-PCR and chromosomal aberrations by the mFISH method. Nuclear accumulation of the EGF receptor (EGFR) was monitored by ELISA.

Results and conclusions

C9,t11-CLA sensitized HT-29 cells to X-radiation. This effect was not due to changes in cell cycle progression or DNA-repair-related gene expression. Post-irradiation DSB rejoining was delayed, corresponding with the insufficient DNA-PK activation, although chromosomal aberration frequencies did not increase. Distributions of cholesterol and caveolin-1 in cellular membrane fractions changed. The nuclear EGFR translocation, necessary to increase the DNA-PK activity in response to oxidative stress, was blocked. We suppose that c9,t11-CLA modified the membrane structure, thus disturbing the intracellular EGFR transport and the EGFR-dependent pro-survival signalling, both functionally associated with lipid raft properties.

General Significance

The results point to the importance of the cell membrane interactions with the nucleus after injury inflicted by X -rays. Compounds like c9,t11-CLA, that specifically alter membrane properties, could be used to develop new anticancer strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号