首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The blend of volatile compounds emitted by tomato plants (Solanum lycopersicum) infested with the potato aphid (Macrosiphum euphorbiae) has been studied comparatively with undamaged plants and aphids themselves. Aphid-infested plants were significantly more attractive towards Aphidius ervi than undamaged plants and aphids themselves. Oriented response towards host-damaged plant, from which aphids were removed just before running the bioassay, did not differ from that recorded for infested plants. Collection of the volatiles and analysis by gas chromatography revealed only quantitative differences between uninfested and aphid-infested plants. Nine compounds, α-pinene, (Z)-3-hexen-1-ol, α-phellandrene, limonene, (E)-β-ocimene, p-cymene, methyl salicylate, (E)-β-caryophyllene and an unknown compound, were emitted at higher levels from aphid-infested plants than from undamaged control plants, whilst no differences were noted for hexanal, 6-methyl-5-hepten-2-one, and humulene (=α-caryophyllene). Synthetic standards of these compounds were tested in wind tunnel bioassays and all elicited a significant increase in oriented flight and landings on the target by the aphid parasitoid Aphidius ervi. (E)-β-caryophyllene resulted the most attractive towards female wasps. These results corroborate the hypothesis that the volatiles produced by the plant in response to aphid attack derive from both jasmonic and salicylic acid pathways, and are exploited by A. ervi as olfactory cues to locate its hosts.  相似文献   

2.
Plants respond adaptively to herbivore stress in order to maintain fitness. Upon herbivore attack, plants emit blends of volatile organic compounds (VOCs) that differ from those that are constitutively emitted. These defense responses are typically specific to the identity of the attacking herbivore and often linked to the herbivore's feeding guild (e.g. chewing, phloem-feeding). Herbivores use plant volatiles to locate suitable host plants and changes in volatile emissions can affect host-plant location. Therefore, herbivores from separate feeding guilds can interact indirectly through the modulation of plant responses. In this study we tested how damage by an herbivore from one feeding guild affected the host-plant choice of an herbivore from a separate feeding guild, and vice versa. A chewing herbivore, the Colorado potato beetle (Leptinotarsa decemlineata), and a phloem feeding herbivore, the green peach aphid (Myzus persicae), were assayed in olfactometers to assess behavioral responses to odors emitted by potato plants (Solanum tuberosum) that were damaged by herbivores from the other feeding guild. Leptinotarsa decemlineata oriented more frequently towards undamaged plants compared to M. persicae damaged plants. Surprisingly, M. persicae preferred plants that were damaged by L. decemlineata, although previous studies had shown that they perform worse on these plants. Distinct differences were detected in the volatile profiles of herbivore-damaged and undamaged plants. Leptinotarsa decemlineata induced stronger volatile emissions compared to undamaged control plants, while M. persicae tended to suppress volatile emissions. These herbivores demonstrate contrasting induction of plant volatiles and behavioral responses. Exploring the nature of co-occurring herbivores and how they perceive potential hosts can play a significant role in understanding the ecological functions and community dynamics of plant plasticity and interactions with a variety of herbivores.  相似文献   

3.
Young potato plants in pots exposed in the open near plots of potatoes for limited periods at intervals during the summer, became infested with large numbers of winged aphids only during warm, calm and dry weather. Although visited by aphids during May and June, when much of the spread of viruses occurred in nearby potato crops, few of the potted plants became infected. Most potted plants became infected in July when alate aphids were leaving neighbouring potato crops. Widely different proportions of the exposed plants became infected in different years; in two of the three years, many more plants were infected with virus Y than with leaf roll virus.  相似文献   

4.
We used a model plant-aphid system to investigate whether the aphid-specific entomopathogenic fungus Pandora neoaphidis responds to aphid-induced defence by the broad-bean plant, Vicia faba. Laboratory experiments indicated that neither in vivo sporulation, conidia size nor the in vitro growth of P. neoaphidis was affected by Acyrthosiphon pisum-induced V. faba volatiles. The proportion of conidia germinating on A. pisum feeding on previously damaged plants was significantly greater than on aphids feeding on undamaged plants, suggesting a direct functional effect of the plant volatiles on the fungus. However, there were no significant differences in the infectivity of P. neoaphidis towards A. pisum feeding on either undamaged V. faba plants or plants previously infested with A. pisum. Therefore, these results provide no evidence to suggest that P. neoaphidis contributes to plant indirect defence strategies.  相似文献   

5.
Plants respond to feeding by herbivorous insects by producing volatile organic chemicals, which mediate interactions between herbivores and plants. Yet, few studies investigated whether such plant responses to herbivory differ between historical host and novel plants. Here, we investigated whether herbivory by the pine weevil Hylobius abietis causes a release of volatile organic chemicals from a novel tree Pinus brutia and compared the relative amounts of volatiles released from herbivore's historical hosts and P. brutia. We collected volatiles emitted from P. brutia seedlings that were either subjected to feeding by H. abietis or no feeding. Our results indicated that feeding increased emission of volatile compounds, composed of monoterpenes and sesquiterpenes, and that the emission was several fold higher in the damaged seedlings than in undamaged seedlings. In particular, emission of monoterpenes and sesquiterpenes increased by 4.4‐and 10‐fold in the damaged plants, respectively. Strikingly, individual monoterpenes and sesquiterpenes showed much greater dissimilarity between damaged and undamaged seedlings. Furthermore, several minor monoterpenes showed negative relationships with the weevil gnawed area. We discussed these results with the results of previous studies focused on historical host plants of H. abietis and hypothesized the ecological relevance and importance of our results pertaining relevance to the plant–herbivory interactions.  相似文献   

6.
Herbivore-induced plant volatiles provide foraging cues for herbivores and for herbivores’ natural enemies. Aphids induce plant volatile emissions and also utilize plant-derived olfactory volatile cues, but the chemical ecology of aphids and other phloem-feeding insects is less extensively documented than that of chewing insects. Here, we characterize the volatile cues emitted by turnip plants (Brassica rapa) under attack by an aphid (Myzus persicae) or by the chewing lepidopteran larva Heliothis virescens. We also tested the behavioral responses of M. persicae individuals to the odors of undamaged and herbivore-damaged plants presented singly or in combination, as well as to the odor of crushed conspecifics (simulating predation). Gas chromatographic analysis of the volatile blend of infested turnips revealed distinct profiles for both aphid- and caterpillar-induced plants, with induced compounds including green-leaf alcohols, esters, and isothiocyanates. In behavioral trials, aphids exhibited increased activity in the presence of plant odors and positive attraction to undamaged turnip plants. However, aphids exhibited a strong preference for the odors of healthy versus plants subjected to herbivore damage, and neither aphid- or caterpillar-damaged plants were attractive compared to clean-air controls. Reduced aphid attraction to herbivore-infested plants may be mediated by changes in the volatile blend constituent composition, including large amounts of isothiocyanates and green-leaf volatiles or, in the case of aphid-infested plants, of the aphid alarm pheromone, (E)-β-farnesene.  相似文献   

7.
When maize plants, Zea mays L., are mechanically damaged and the damaged sites are treated with caterpillar regurgitant, the plants will release a specific blend of volatiles. It is known that these volatiles can be attractive to natural enemies of herbivores. We hypothesise that the plant volatiles constitute part of the induced plant defence and that herbivores will be affected by the odours as well. In laboratory and semi-field studies this hypothesis was tested for the aphid Rhopalosiphum maidis (Fitch) (Rhynchota, Sternorrhyncha, Aphididae).In a Y-tube olfactometer significantly more aphids chose the odour of healthy, undamaged maize seedlings when tested against clean air or plants treated with regurgitant. Clean air was chosen more often when tested next to the odour of treated plants. This apparently repellent effect of the odour of treated plants was significant for winged aphids, but not for the wingless aphids.In field experiments aphids were released in the centre of circles of eight potted maize plants. Four plants in each circle were damaged and treated with caterpillar regurgitant while the other plants were left unharmed. At different intervals after aphid release, the number of aphids was counted on each plant. Significantly fewer winged and wingless aphids were found back on treated plants than on healthy plants.We suggest that herbivores may be repelled by the odours because they could indicate that: 1) the plant has initiated the production of toxic compounds; 2) potential competitors are present on the plant; 3) the plant is attractive to parasitoids and predators. Aphids may be particularly sensitive to induced maize volatiles because one of the major compounds emitted by the plant is (E)--farnesene, which is a common alarm pheromone for aphids. Collections and analyses of the odours emitted by crushed R. maidis confirmed that it too emits (E)--farnesene when stressed. The results are discussed in context of plant defence strategies and their possible exploitation for the control of pest insects.  相似文献   

8.
Plants can use induced volatiles to detect herbivore‐ and pathogen‐attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress‐related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore‐induced volatile priming cues with complementary information content, the green leaf volatile (Z)‐3‐hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile‐exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile‐exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual‐exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.  相似文献   

9.
捕食螨化学生态研究进展   总被引:1,自引:0,他引:1  
董文霞  王国昌  孙晓玲  陈宗懋 《生态学报》2010,30(15):4206-4212
捕食螨是重要的生物防治因子。早在20世纪70年代就发现了捕食螨的性信息素,许多研究证明植物挥发物在捕食螨向猎物定位过程中发挥着至关重要的作用,影响捕食螨寻找猎物的植物挥发物来源于未受害植物、机械损伤植物、猎物危害植物、非猎物危害植物。人工合成的植物挥发物组分对捕食螨具有引诱作用,但引诱活性低于虫害诱导植物释放的挥发性混合物。捕食螨的饲养条件、饥饿程度、学习与经验行为等会影响捕食螨对植物挥发物的反应。介绍了信息素与植物挥发物对捕食螨的作用,并讨论了目前存在的问题和研究前景。  相似文献   

10.
It is well known that volatile cues from damaged plants may induce resistance in neighboring plants. Much less is known about the effects of volatile interaction between undamaged plants. In this study, barley plants, Hordeum vulgare cv. Kara, were exposed to volatiles from undamaged plants of barley cv. Alva or thistle Cirsium vulgare, and to the volatile phytochemicals, methyl salicylate or methyl jasmonate. Exposures were made either during natural daylight or darkness. Acceptance of exposed plants by the aphid Rhopalosiphum padi was assessed, as well as the expression of putative marker genes for the different treatments. Aphid acceptance of plants exposed to either barley or C. vulgare was significantly reduced, and an effect of the volatiles from undamaged plants was confirmed by the induction of pathogenesis-related protein, PR1a in exposed plants. However the effect on aphid acceptance was seen only when plants were exposed during darkness, whereas PR1a was induced only after treatment during daylight. Aphid acceptance of plants exposed to either methyl salicylate or methyl jasmonate was significantly reduced, but only when plants were exposed to the chemicals during daylight. AOS2 (allene oxide synthase) was induced by methyl jasmonate and BCI-4 (barley chemical inducible gene-4) by methyl salicylate in both daylight and darkness. It is concluded that (a) the effects on aphids of exposing barley to volatile phytochemicals was influenced by the presence or absence of light and (b) the response of barley to methyl salicylate/methyl jasmonate and to volatiles from undamaged plants differed at the gene and herbivore level.Key Words: methyl jasmonate, methyl salicylate, allelobiosis, barley, PR1, allene oxide synthase, Rhopalosiphum padi, light  相似文献   

11.
Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids.  相似文献   

12.
Intermittent exposure during a period of 3 weeks of undamaged Arabidopsis plants to trace amounts of volatiles emitted by freshly damaged Arabidopsis plants resulted in an increase of subsequent artificial-damage-induced production of (Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol in the exposed Arabidopsis plants when compared with Arabidopsis plants exposed to undamaged Arabidopsis plant volatiles (control plants). We previously showed that (Z)-3-hexen-1-yl acetate attracts a parasitic wasp, Cotesia glomerata. Thus, the induced production of this volatile explained our previously reported finding that, when artificially damaged, the exposed plants were more attractive to C. glomerata than control plants.  相似文献   

13.
Alarm pheromone mediates production of winged dispersal morphs in aphids   总被引:9,自引:0,他引:9  
The aphid alarm pheromone ( E )- β -farnesene (EBF) is the major example of defence communication in the insect world. Released when aphids are attacked by predators such as ladybirds or lacewing larvae, aphid alarm pheromone causes behavioural reactions such as walking or dropping off the host plant. In this paper, we show that the exposure to alarm pheromone also induces aphids to give birth to winged dispersal morphs that leave their host plants. We first demonstrate that the alarm pheromone is the only volatile compound emitted from aphid colonies under predator attack and that emission is proportional to predator activity. We then show that artificial alarm pheromone induces groups of aphids but not single individuals to produce a higher proportion of winged morphs among their offspring. Furthermore, aphids react more strongly to the frequency of pheromone release than the amount of pheromone delivered. We suggest that EBF leads to a 'pseudo crowding' effect whereby alarm pheromone perception causes increased walking behaviour in aphids resulting in an increase in the number of physical contacts between individuals, similar to what happens when aphids are crowded. As many plants also produce EBF, our finding suggests that aphids could be manipulated by plants into leaving their hosts, but they also show that the context-dependence of EBF-induced wing formation may hinder such an exploitation of intraspecific signalling by plants.  相似文献   

14.
Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9..Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed.  相似文献   

15.
Herbivore‐induced volatiles are widespread in plants. They can serve as alert signals that enable neighbouring leaves and plants to pre‐emptively increase defences and avoid herbivory damage. However, our understanding of the factors mediating volatile organic compound (VOC) signal interpretation by receiver plants and the degree to which multiple herbivores affect VOC signals is still limited. Here we investigated whether plant responses to damage‐induced VOC signals were population specific. As a secondary goal, we tested for interference in signal production or reception when plants were subjected to multiple types of herbivore damage. We factorially crossed the population sources of paired Phaseolus lunatus plants (same versus different population sources) with a mechanical damage treatment to one member of the pair (i.e. the VOC emitter, damaged versus control), and we measured herbivore damage to the other plant (the VOC receiver) in the field. Prior to the experiment, both emitter and receiver plants were naturally colonized by aphids, enabling us to test the hypothesis that damage from sap‐feeding herbivores interferes with VOC communication by including emitter and receiver aphid abundances as covariates in our analyses. One week after mechanical leaf damage, we removed all the emitter plants from the field and conducted fortnightly surveys of leaf herbivory. We found evidence that receiver plants responded using population‐specific ‘dialects’ where only receivers from the same source population as the damaged emitters suffered less leaf damage upon exposure to the volatile signals. We also found that the abundance of aphids on both emitter and receiver plants did not alter this volatile signalling during both production and reception despite well‐documented defence crosstalk within individual plants that are simultaneously attacked by multiple herbivores. Overall, these results show that plant communication is highly sensitive to genetic relatedness between emitter and receiver plants and that communication is resilient to herbivore co‐infestation.  相似文献   

16.
Batches of potato plants in pots were placed in the field for limited periods among plants infected with potato virus Y and leaf roll virus. Some of the potted plants were surrounded by sticky boards which prevented apterous aphids from reaching them. Almost as many plants within the boards as without became infected, indicating that most of the spread of virus was by winged aphids.
Apterae were probably responsible for spreading the viruses throughout a hill after one or more stems were infected. They may carry infection to neighbouring plants, but most of these will have been infected already by alatae.
The number of plants contracting infection was unaffected by watering.  相似文献   

17.
A recently synthesized kairomone blend, based on the volatiles produced by potato (Solanum spp.) plants, has been demonstrated to be attractive to both adult and larval stages of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). It was subsequently formulated in a viscous inert carrier for field applications and showed potential for aggregating beetles in treated areas of the field. We investigated effects of this kairomone formulation on the potato aphid, Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae). The response of both winged and wingless adults to natural potato foliage and synthetic kairomone was tested in a Y-tube olfactometer. Aphid response to untreated potato foliage, foliage treated with the kairomone blend, and foliage treated with blank inert carrier also was tested in petri dishes. In addition, aphid densities on field plots treated with kairomone and blank inert carrier were compared with the control plots. The untreated potato foliage was found to be attractive to wingless, but not winged, potato aphids. In the olfactometer, the foliage treated with synthetic Colorado potato beetle kairomone was not attractive to either winged or wingless aphids. In petri dishes, aphids avoided leaflets treated with both kairomone formulation and its blank carrier. There was no statistical difference between any treatments compared in the field.  相似文献   

18.
Aphids are major economic pests of many of the worlds' crops, causing damage directly by feeding and by acting as vectors for plant viruses. By understanding how aphids locate their host plants, it may become possible to develop new means of controlling populations by taking advantage of these natural host location/nonhost avoidance behaviours. Aphids have also become important model organisms in the study of insect–plant interactions and an improved understanding of host location in aphids could yield insights into the behaviour and ecology of other insect orders. The use of olfaction by host‐seeking aphids is well documented and, in recent years, considerable information has been gained on how volatiles can encode host identity and suitability, as well as the specific behaviours they elicit from aphids. The purpose of this review is to highlight the major findings on how aphids respond behaviourally to volatile compounds and how they can use them to locate their host plants and avoid unsuitable hosts.  相似文献   

19.
In response to herbivore attack, plants release herbivore-induced plant volatiles (HIPVs) that represent important chemical cues for herbivore natural enemies. Additionally, HIPVs have been shown to mediate other ecological interactions with herbivores. Differently from natural enemies that are generally attracted to HIPVs, herbivores can be either attracted or repelled depending on several biological and ecological parameters. Our study aimed to assess the olfactory response of fall armyworm-mated female moths toward odors released by mechanically and herbivore-induced corn at different time intervals. Results showed that female moths strongly respond to corn volatiles, although fresh damaged corn odors (0?C1?h) are not recognized by moths. Moreover, females preferred volatiles released by undamaged plant over herbivore-induced plants at 5?C6?h. This preference for undamaged plants may reflect an adaptive strategy of moths to avoid competitors and natural enemies for their offspring. We discussed our results based on knowledge about corn volatile release pattern and raise possible explanations for fall armyworm moth behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号