首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that Cibacron Blue F3GA dye resin chromatography can be used to identify ligands that specifically interact with proteins from Mycobacterium tuberculosis, and that the identification of these ligands can facilitate structure determination by enhancing the quality of crystals. Four native Mtb proteins of the aldehyde dehydrogenase (ALDH) family were previously shown to be specifically eluted from a Cibacron Blue F3GA dye resin with nucleosides. In this study we characterized the nucleoside-binding specificity of one of these ALDH isozymes (recombinant Mtb Rv0223c) and compared these biochemical results with co-crystallization experiments with different Rv0223c-nucleoside pairings. We found that the strongly interacting ligands (NAD and NADH) aided formation of high-quality crystals, permitting solution of the first Mtb ALDH (Rv0223c) structure. Other nucleoside ligands (AMP, FAD, adenosine, GTP and NADP) exhibited weaker binding to Rv0223c, and produced co-crystals diffracting to lower resolution. Difference electron density maps based on crystals of Rv0223c with various nucleoside ligands show most share the binding site where the natural ligand NAD binds. From the high degree of similarity of sequence and structure compared to human mitochondrial ALDH-2 (BLAST Z-score = 53.5 and RMSD = 1.5 Å), Rv0223c appears to belong to the ALDH-2 class. An altered oligomerization domain in the Rv0223c structure seems to keep this protein as monomer whereas native human ALDH-2 is a multimer.  相似文献   

2.
Vacuolar malate transport in Catharanthus roseus is probably mediated by a 37 kDa intrinsic tonoplast protein identified with a photolyzable malate analog. Antibodies raised against the protein inhibit malate uptake in isolated vacuoles. We report here the native molecular mass and the oligomeric state of the putative malate transporter which were determined from two-dimensional native electrophoresis. In its first dimension, the electrophoresis used a charge shift method developed for isolating native membrane protein complexes from purified tonoplast vesicles. In combination with a second dimension of sodium dodecylsulfate electrophoresis, it enables the determination of the oligomeric state and subunit composition of non-dissociated complexes. In such analyses, most of the tonoplast proteins of Catharanthus roseus appear to have a complex structure. In native gels (first dimension), both the photoprobe and the antibodies recognized a 160 kDa protein. The photolabelling characteristics correlate well with the main features of malate transport activity. The 160 kDa protein, when analyzed in the second dimension, contained the 37 kDa polypeptide as a subunit. In addition, cross-linking with dimethyl suberimidate (DMS) in the intact tonoplast vesicles resulted in the disappearance of the 37 kDa monomer protein band with concomitant appearance of additional bands of molecular masses higher than the monomer, i.e. 73 and 160 kDa. These results, taken together, suggest that the putative malate transporter exists in the tonoplast as a tetramer.  相似文献   

3.
Blue native electrophoresis is used widely for the analysis of non-dissociated protein complexes with respect to composition, oligomeric state and molecular mass. However, the effects of detergent or dye binding on the mass and stability of the integral membrane proteins have not been studied. By comparison with analytical ultracentrifugation, we have evaluated whether the oligomeric state of membrane transport proteins is reflected reliably with blue native electrophoresis. For the analysis we have used two well-characterized transporters, that is, the major facilitator superfamily protein LacS and the phosphotransferase system EII(Mtl). For another member of the major facilitator superfamily, the xyloside transporter XylP from Lactobacillus pentosus, the complete analysis of the quaternary structure determined by analytical ultracentrifugation and freeze-fracture electron microscopy is presented.Our experiments show that during blue native electrophoresis the detergent bound to the proteins is replaced by the amphipathic Coomassie brilliant blue (CBB) dye. The mass of the bound CBB dye was quantified. Provided this additional mass of bound CBB dye is accounted for and care is taken in the choice and concentration of the detergent used, the mass of LacS, XylP and EII(Mtl) and four other membrane (transport) proteins could be deduced within 10 % error. Our data underscore the fact that the oligomeric state of many membrane transport proteins is dimeric.  相似文献   

4.
ADP/ATP carriers (AACs) are major and essential constituents of the inner mitochondrial membrane. They drive the import of ADP and the export of newly synthesized ATP. They were described as functional dimers from the 1980s until the structures of the AAC shed doubt on this consensus. We aimed to ascertain the published biophysical data claiming that AACs are dimers and to characterize the oligomeric state of the protein before crystallization. Analytical ultracentrifugation sedimentation velocity experiments clearly show that the bovine AAC is a monomer in 3-laurylamido-N,N'-dimethylpropylaminoxide (LAPAO), whereas in Triton X-100 and reduced Triton X-100, higher molecular mass species can also be identified. Neutron scattering data for monomeric bovine AAC in LAPAO does not give definite conclusions on the association state, because the large amount of detergent and lipids is imperfectly matched by contrast methods. We discuss a possible way to integrate previously published biochemical evidence in favor of assemblies, the lack of well-defined multimers that we observe, and the information from the high-resolution structures, considering supramolecular organizations of AACs within the mitochondrial membrane.  相似文献   

5.
Blue native PAGE   总被引:1,自引:0,他引:1  
Blue native PAGE (BN-PAGE) can be used for one-step isolation of protein complexes from biological membranes and total cell and tissue homogenates. It can also be used to determine native protein masses and oligomeric states and to identify physiological protein-protein interactions. Native complexes are recovered from gels by electroelution or diffusion and are used for 2D crystallization and electron microscopy or analyzed by in-gel activity assays or by native electroblotting and immunodetection. In this protocol, we describe methodology to perform BN-PAGE followed by (i) native extraction or native electroblotting of separated proteins, or (ii) a second dimension of tricine-SDS-PAGE or modified BN-PAGE, or (iii) a second dimension of isoelectric focusing (IEF) followed by a third dimension of tricine-SDS-PAGE for the separation of subunits of complexes. These protocols for 2D and 3D PAGE can be completed in 2 and 3 days.  相似文献   

6.
Blue Native electrophoresis to study mitochondrial and other protein complexes   总被引:23,自引:0,他引:23  
The biogenesis and maintenance of mitochondria relies on a sizable number of proteins. Many of these proteins are organized into complexes, which are located in the mitochondrial inner membrane. Blue Native polyacrylamide gel electrophoresis (BN-PAGE) is a method for the isolation of intact protein complexes. Although it was initially used to study mitochondrial respiratory chain enzymes, it can also be applied to other protein complexes. The use of BN-PAGE has increased exponentially over the past few years and new applications have been developed. Here we review how to set up the basic system and outline modifications that can be applied to address specific research questions. Increasing the upper mass limit of complexes that can be separated by BN-PAGE can be achieved by using agarose instead of acrylamide. BN-PAGE can also be used to study assembly of mitochondrial protein complexes. Other applications include in-gel measurements of enzyme activity by histochemical staining and preparative native electrophoresis to isolate a protein complex. Finally, new ways of identifying protein spots in Blue Native gels using mass spectrometry are briefly discussed.  相似文献   

7.
Yang Y  Wang J  Bu D  Zhang L  Li S  Zhou L  Wei H 《Biotechnology letters》2011,33(1):119-121
A sensitive and convenient “visible SYPRO” staining protocol was developed for visualizing proteins after SDS-PAGE. Gels were sensitized with SYPRO Ruby and then stained with the Coomassie Brilliant Blue G-250 protocol (Blue Silver). This combined protocol had similar or better linearity than staining with only SYPRO Ruby or Blue Silver, respectively. In addition, this method was more sensitive than that of Blue Silver, simpler than that of SYPRO Ruby, and compatible with subsequent mass spectrometry analysis.  相似文献   

8.
Commercially available Coomassie Brilliant Blue R-250 (C.I. 42660) is a popular and useful dye that stains most proteins blue on polyacrylamide gels. Some proteins from brain (rubrophilin), collagens, histones and parotid gland proteins are distinctly red when stained with Coomassie Blue. Commonly used Coomassie Brilliant Blue R-250 preparations may contain more than 30 distinct colored and fluorescent components that can be separated on silica gel chromatographic columns. A specific component has been isolated on silica gel columns that stains rubrophilin and other proline-rich proteins a reddish color. Fast atom bombardment mass spectrometry of the isolated rubrophilin staining principle indicates a molecular weight of 634 as compared to 826 for the major dye in the original Coomassie Brilliant Blue R-250. Infrared spectrometry is consistent with a difference between the rubrophilin staining principle and Coomassie Brilliant Blue R-250 of a toluene sulfonic acid residue.  相似文献   

9.
Wittig I  Schägger H 《Proteomics》2008,8(19):3974-3990
1-D native electrophoresis is used for the separation of individual proteins, protein complexes, and supercomplexes. Stable and labile protein-protein interactions can be identified depending on detergent and buffer conditions. 1-D native gels are immediately applicable for in-gel detection of fluorescent-labeled proteins and for in-gel catalytic activity assays. 1-D native gels and blots are used to determine native mass and oligomeric state of membrane proteins. Protein extracts from 1-D native gels are used for generation of antibodies, for proteomic work, and for advanced structural investigations. 2-D separation of subunits of protein complexes by SDS-PAGE is mostly used for immunological and proteomic studies. Following the discussion of these general features, specific applications of native electrophoresis techniques in various research fields are highlighted: immunological and receptor studies, biogenesis and assembly of membrane protein complexes, protein import into organelles, dynamics of proteasomes, proteome and subproteome investigations, the identification and quantification of mitochondrial alterations in apoptosis, carcinogenesis, and neurodegenerative disorders like Parkinson's disease, Alzheimer's disease, and the vast variety of mitochondrial encephalomyopathies.  相似文献   

10.
According to previous studies, ADP/ATP carrier (AAC) can possibly exist as a monomer or in a dimer state in the inner mitochondrial membrane; however, the question on its functional oligomeric state is still open. The aim of the present work is to establish the external factors that could control the functional oligomeric state of AAC (i.e., monomer or dimer). The study is based on the results of our previous work, which revealed that the volume regulation system of mitochondria (MVRS) affects the oxidative phosphorylation (OXPHOS) system: MVRS could transfer OXPHOS system functioning in a state of supercomplex. Consequently, one may expect that the volume regulation system could also control the functional state of AAC during phosphorylation. Here, on rat liver mitochondria we show that, depending on the incubation medium tonicity, AAC functions in two different ways: either as a monomer (in hypotonic and isotonic media) or as a dimer (in a hypertonic medium). Thus, the transition between the monomeric and dimeric forms of AAC is regulated by MVRS, as well as by functioning of OXPHOS. We conclude that the structural reorganization of AAC is associated with the entire OXPHOS reorganization into a supercomplex. It was also found that dimerization of AAC can occur not only due to the action of MVRS (in hypotonic media) but also under hypoxic conditions.  相似文献   

11.
12.
A new native protein gel system was recently developed that enables the rapid and convenient analysis of virtually all soluble proteins, in particular including basic proteins, in their native oligomeric states. This gel system combines the addition of negative charges to the proteins by the dye SERVA Blue G with a Tris-histidine discontinuous buffer system and the use of polyacrylamide gradient gels. The use of histidine for sample focusing rather than glycine as a slow dipolar ion following from the cathode buffer serves to improve migration of basic proteins. In this review, the principle of function as well as the advantages and disadvantages of the new gel system are discussed in the context of other native protein gel systems and further methods for the analysis of the oligomeric state of a protein.  相似文献   

13.
RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5′ leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae–RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein–protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.  相似文献   

14.
Glutaraldehyde treatment of the C12E8 solubilized H+/K(+)-ATPase crosslinks the catalytic subunit with an apparent molecular mass of 94 kDa in SDS polyacrylamide gels into two Coomassie stained particles migrating at approx. 147 and 173 kDa. The subunit composition of these particles was determined from the comparative distribution of FITC fluorescence, wheat germ agglutinin and anti-beta antibody reactivity in control and crosslinked preparations. FITC exclusively labelled the catalytic monomer of the native preparation and its fluorescence was initially distributed into two broad bands centered at approx. 147 and 173 kDa after crosslinking. These fluorescent bands coincided with the Coomassie stained particles. A glycoprotein(s) detected by wheat germ agglutinin reactivity was present in diffuse areas between 65 and 86 kDa and 95 to 134 kDa in the control preparation. This area was also labelled by the anti-beta antibodies. With crosslinking, the distribution of the wheat germ agglutinin reactive protein and anti-beta antibodies coincided with the crosslinked particles labelled by FITC. The presence of both the catalytic monomer and the beta subunit glycoprotein in the crosslinked particles indicated that these proteins were closely associated in the C12E8 solution. This suggests that the minimal structural particle of the H+/K(+)-ATPase is an alpha,beta-heterodimer.  相似文献   

15.
Mutations in the genes composing the mitochondrial translation apparatus are an important cause of a heterogeneous group of oxidative phosphorylation (OXPHOS) disorders. We studied the index case in a consanguineous family in which two children presented with severe encephalopathy, lactic acidosis, and intractable seizures leading to an early fatal outcome. Blue native polyacrylamide gel electrophoretic (BN-PAGE) analysis showed assembly defects in all of the OXPHOS complexes with mtDNA-encoded structural subunits, and these defects were associated with a severe deficiency in mitochondrial translation. Immunoblot analysis showed reductions in the steady-state levels of several structural subunits of the mitochondrial ribosome. Whole-exome sequencing identified a homozygous missense mutation (c.1250G>A) in an uncharacterized gene, RMND1 (required for meiotic nuclear division 1). RMND1 localizes to mitochondria and behaves as an integral membrane protein. Retroviral expression of the wild-type RMND1 cDNA rescued the biochemical phenotype in subject cells, and siRNA-mediated knockdown of the protein recapitulated the defect. BN-PAGE, gel filtration, and mass spectrometry analyses showed that RMND1 forms a high-molecular-weight and most likely homopolymeric complex (∼240 kDa) that does not assemble in subject fibroblasts but that is rescued by expression of RMND1 cDNA. The p.Arg417Gln substitution, predicted to be in a coiled-coil domain, which is juxtaposed to a transmembrane domain at the extreme C terminus of the protein, does not alter the steady-state level of RMND1 but might prevent protein-protein interactions in this complex. Our results demonstrate that the RMND1 complex is necessary for mitochondrial translation, possibly by coordinating the assembly or maintenance of the mitochondrial ribosome.  相似文献   

16.
Globulins are an important group of seed storage proteins in dicotyledonous plants. They are synthesized during seed development, assembled into very compact protein complexes, and finally stored in protein storage vacuoles (PSVs). Here, we report a proteomic investigation on the native composition and structure of cruciferin, the 12 S globulin of Brassica napus. PSVs were directly purified from mature seeds by differential centrifugations. Upon analyses by blue native (BN) PAGE, two major types of cruciferin complexes of ∼ 300–390 kDa and of ∼470 kDa are resolved. Analyses by two-dimensional BN/SDS-PAGE revealed that both types of complexes are composed of several copies of the cruciferin α and β polypeptide chains, which are present in various isoforms. Protein analyses by two-dimensional isoelectric focusing (IEF)/SDS-PAGE not only revealed different α and β isoforms but also several further versions of the two polypeptide chains that most likely differ with respect to posttranslational modifications. Overall, more than 30 distinct forms of cruciferin were identified by mass spectrometry. To obtain insights into the structure of the cruciferin holocomplex, a native PSV fraction was analyzed by single particle electron microscopy. More than 20,000 images were collected, classified, and used for the calculation of detailed projection maps of the complex. In contrast to previous reports on globulin structure in other plant species, the cruciferin complex of Brassica napus has an octameric barrel-like structure, which represents a very compact building block optimized for maximal storage of amino acids within minimal space.  相似文献   

17.
Nicastrin and its relative Nicalin (Nicastrin-like protein) are both members of larger protein complexes, namely γ-secretase and the Nicalin-NOMO (Nodal modulator) complex. The γ-secretase complex, which contains Presenilin, APH-1, and PEN-2 in addition to Nicastrin, catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the β-amyloid precursor protein and Notch. Nicalin and its binding partner NOMO form a complex that was shown to modulate Nodal signaling in developing zebrafish embryos. Because its experimentally determined native size (200–220 kDa) could not be satisfyingly explained by the molecular masses of Nicalin (60 kDa) and NOMO (130 kDa), we searched in affinity-purified complex preparations for additional components in the low molecular mass range. A ∼22-kDa protein was isolated and identified by mass spectrometry as transmembrane protein 147 (TMEM147), a novel, highly conserved membrane protein with a putative topology similar to APH-1. Like Nicalin and NOMO, it localizes to the endoplasmic reticulum and is expressed during early zebrafish development. Overexpression and knockdown experiments in cultured cells demonstrate a close relationship between the three proteins and suggest that they are components of the same complex. We present evidence that, similar to γ-secretase, its assembly is hierarchical starting with the formation of a Nicalin-NOMO intermediate. Nicalin appears to represent the limiting factor regulating the assembly rate by stabilizing the other two components. We conclude that TMEM147 is a novel core component of the Nicalin-NOMO complex, further emphasizing its similarity with γ-secretase.  相似文献   

18.
Two target polypeptides were detected by photoaffinity labelling of purified mung bean mitochondria using tritiated 2-azido-N6-benzylaminopurine. SDS-PAGE and fluorography of total mitochondrial proteins after the photoaffinity reaction showed a labelled 32 kDa polypeptide (intensely labelled) and a 57 kDa polypeptide (less intensely labelled). The latter was assumed to be the and/or subunit of F1ATPase since it was the most abundant polpeptide in gels stained with Coomassie Blue. Partial purification of F1ATPase demonstrated that the 32 kDa polypeptide was not a component of the ATPase complex. Fractionation experiments showed that the 32 kDa protein was integrally associated with mitochondrial membranes and could be enriched by simple washing and detergent extraction procedures.  相似文献   

19.
With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa), from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo) lactoferrin (∼78–80 kDa), retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01) of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis) and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further.  相似文献   

20.
Coomassie Brilliant Blue (CBB) protein stains are inexpensive but detect proteins at only at microgram levels. Because of acetic acid and methanol, they cause skin irritation and reduce work motivation by malodor. Recent mass spectrometric (MS) analyses demonstrated that nanogram-sensitive colloidal CBB staining resulted in in vitro methylations of proteins. We propose a rapid, inexpensive, sensitive, odorless, less harsh, and in vitro methylation-free CBB stain. CGP uses three components: citric acid, CBB G-250, and polyvinylpyrrolidone. CGP detects proteins at 12 ng within 45 min, and because it is nonalcohol, in principle in vitro methylation would be eliminated. Indeed, MS analysis of CGP-stained bands confirmed a lack of methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号