首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant regeneration strategy plays a critical role in species survival and can be used as a proxy for the evolutionary response of species to climate change. However, information on the effects of key plant traits and phylogenetic relatedness on seed germination is limited at large regional scales that vary in climate. To test the hypotheses that phylogenetic niche conservatism plays a critical force in shaping seed ecophysiological traits across species, and also drives their response to climatic fluctuation, we conducted a controlled experiment on seed germination and determined the percentage and rate of germination for 249 species in subtropical China under two temperature regimes (i.e., daily 25°C; daily alternating 25/15°C for each 12 hr). Germination was low with a skewed distribution (mean = 38.9% at 25°C, and 43.3% at 25/15°C). One fifth of the species had low (<10%) and slow (4–30 days) germination, and only a few (8%) species had a high (>80%) and rapid (1.2–6.6 days) germination. All studied plant traits (including germination responses) showed a significant phylogenetic signal, with an exception of seed germination percentage under the alternating temperature scenario. Generalized linear models (GLMs) and phylogenetic generalized estimation equations (GEEs) demonstrated that growth form and seed dispersal mode were strong drivers of germination. Our experimental study highlights that integrating plant key traits and phylogeny is critical to predicting seed germination response to future climate change.  相似文献   

2.
Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C.  相似文献   

3.
Ephedra alata Decne is a perennial shrub and it is a very effective sand-binder. In Saudi Arabia, the species is associated with sand dunes formation, especially the mobile, non-saline and low moisture content ones. Its geographical distribution in Saudi Arabia includes the Northern, Eastern and Central regions. The aims of this study were to determine the effects of temperature, water potential and Sodium Chloride on germination of E. alata. Seeds were collected from King Khalid Centre of Wildlife Research and Development at Thumama (80 km north east of Riyadh), Saudi Arabia. Seeds were germinated at four alternating temperature regimes (8/22; 9/23; 13/27 and 18/35 °C). Seeds were also germinated under stress of aqueous Polyethylene Glycol (PEG) solutions mixed to create water potentials of 0; −0.3; −0.6; −1.2 and −1.5 MPa. Seed were also germinated in Sodium Chloride solutions of 0, 0.05, 0.1, 0.2 and 0.3 mol l−1. Optimum germination was attained at 13/28 °C that corresponds to temperatures prevailing during spring time. Seeds germinated in Polyethylene Glycol solutions exhibited significantly lower germination than control especially when water potential fell below −0.3 MPa. Germination was also negatively affected by 0.1 mol l−1 Sodium Chloride solution or above. Results indicated that the germination temperature responses of the nondormant seeds synchronize the event of germination with the season when environmental conditions are more favorable for subsequent growth and seedling establishment. Germination was also sensitive to both water potential and salinity.  相似文献   

4.
The postinduction period of Oenothera biennis L. seed germination was examined by temperature treatments. For all experiments, seeds received a standard 24 hour/24°C preinduction period and 12 hour/32°C photoinduction period. Germination is inhibited by postinduction temperatures above 32°C. When seeds are briefly incubated at 44°C and then transferred to 28°C, they germinate at a much lower percentage than 28°C controls. When thermally inhibited seeds are placed in the dark at 28°C for 20 hours, they can be promoted to germinate by a single pulse of red light. Seeds incubated at 12°C or below immediately after photoinduction enter a lag period in which they germinate slowly or not at all for a long time and then resume germination. The length of the lag period is exponentially related to the postinduction temperature. When seeds are incubated at a low temperature and then transferred to a warm temperature, they germinate much more rapidly than seeds not incubated at a low temperature. A model is proposed which is consistent with these and additional results. In the model, a germination promoter is irreversibly formed from a precursor and the synthesis of the precursor is favored at low temperatures and its degradation is favored at high temperatures.  相似文献   

5.
Feather lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes] is a C4 grass weed that has the ability to grow in both lowland and upland conditions. Experiments were conducted in the laboratory and screenhouse to evaluate the effect of environmental factors on germination, emergence, and growth of this weed species. Germination in the light/dark regime was higher at alternating day/night temperatures of 30/20 °C (98%) than at 35/25 °C (83%) or 25/15 °C (62%). Germination was completely inhibited by darkness. The osmotic potential and sodium chloride concentrations required for 50% inhibition of maximum germination were -0.7 MPa and 76 mM, respectively. The highest seedling emergence (69%) was observed from the seeds sown on the soil surface and no seedlings emerged from seeds buried at depths of 0.5 cm or more. The use of residue as mulches significantly reduced the emergence and biomass of feather lovegrass seedlings. A residue amount of 0.5 t ha-1 was needed to suppress 50% of the maximum seedlings. Because germination was strongly stimulated by light and seedling emergence was the highest for the seeds sown on the soil surface, feather lovegrass is likely to become a problematic weed in zero-till systems. The knowledge gained from this study could help in developing effective and sustainable weed management strategies.  相似文献   

6.
Bin Wen 《PloS one》2015,10(10)
Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15–30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20–60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant.  相似文献   

7.
Plant species with physical seed dormancy are common in mediterranean fire-prone ecosystems. Because fire breaks seed dormancy and enhances the recruitment of many species, this trait might be considered adaptive in fire-prone environments. However, to what extent the temperature thresholds that break physical seed dormancy have been shaped by fire (i.e., for post-fire recruitment) or by summer temperatures in the bare soil (i.e., for recruitment in fire-independent gaps) remains unknown. Our hypothesis is that the temperature thresholds that break physical seed dormancy have been shaped by fire and thus we predict higher dormancy lost in response to fire than in response to summer temperatures. We tested this hypothesis in six woody species with physical seed dormancy occurring in fire-prone areas across the Mediterranean Basin. Seeds from different populations of each species were subject to heat treatments simulating fire (i.e., a single high temperature peak of 100°C, 120°C or 150°C for 5 minutes) and heat treatments simulating summer (i.e., temperature fluctuations; 30 daily cycles of 3 hours at 31°C, 4 hours at 43°C, 3 hours at 33°C and 14 hours at 18°C). Fire treatments broke dormancy and stimulated germination in all populations of all species. In contrast, summer treatments had no effect over the seed dormancy for most species and only enhanced the germination in Ulex parviflorus, although less than the fire treatments. Our results suggest that in Mediterranean species with physical dormancy, the temperature thresholds necessary to trigger seed germination are better explained as a response to fire than as a response to summer temperatures. The high level of dormancy release by the heat produced by fire might enforce most recruitment to be capitalized into a single post-fire pulse when the most favorable conditions occur. This supports the important role of fire in shaping seed traits.  相似文献   

8.
Germination of Potentilla norvegica L. (rough cinquefoil) seeds stimulated by fluorescent irradiations of nearly 24 hours was inhibited by ethylene at <1 microliter per liter. Sensitivity to ethylene inhibition was highest during and immediately after the irradiation. By delaying ethylene treatment until about a day after the light potentiation, seeds escaped the inhibition. Ethylene inhibition may be readily reversed upon release of the gas and reirradiation of the seeds. Imbibition of seeds at 10 or 15°C, or at high temperatures of 35 and 40°C, partially prevented subsequent inhibition by ethylene. Alternating temperatures during germination nearly overcame the inhibition from 1 microliter per liter ethylene, but not higher doses. With brief red-irradiation and alternating temperatures, 0.1 microliter per liter ethylene promoted germination about 2-fold. These data suggest that ethylene may loosely associate on a site required for phytochrome action. The effect of temperature that opposed the inhibition may be to deny the association of ethylene with the site. Loose association is supported by the reversal of inhibition by gas release and increased temperature during germination. A blocking effect was shown by the failure of phytochrome to act when ethylene was present.  相似文献   

9.
A wealth of studies has investigated how chemical sensitivity is affected by temperature, however, almost always under different constant rather than more realistic fluctuating regimes. Here we compared how the nematode Caenorhabditis elegans responds to copper at constant temperatures (8–24°C) and under fluctuation conditions of low (±4°C) and high (±8°C) amplitude (averages of 12, 16, 20°C and 16°C respectively). The DEBkiss model was used to interpret effects on energy budgets. Increasing constant temperature from 12–24°C reduced time to first egg, life-span and population growth rates consistent with temperature driven metabolic rate change. Responses at 8°C did not, however, accord with this pattern (including a deviation from the Temperature Size Rule), identifying a cold stress effect. High amplitude variation and low amplitude variation around a mean temperature of 12°C impacted reproduction and body size compared to nematodes kept at the matching average constant temperatures. Copper exposure affected reproduction, body size and life-span and consequently population growth. Sensitivity to copper (EC50 values), was similar at intermediate temperatures (12, 16, 20°C) and higher at 24°C and especially the innately stressful 8°C condition. Temperature variation did not increase copper sensitivity. Indeed under variable conditions including time at the stressful 8°C condition, sensitivity was reduced. DEBkiss identified increased maintenance costs and increased assimilation as possible mechanisms for cold and higher copper concentration effects. Model analysis of combined variable temperature effects, however, demonstrated no additional joint stressor response. Hence, concerns that exposure to temperature fluctuations may sensitise species to co-stressor effects seem unfounded in this case.  相似文献   

10.
Lettuce (Lactuca sativa ‘Salinas’) seeds fail to germinate when imbibed at temperatures above 25°C to 30°C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37°C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.  相似文献   

11.
Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species'' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination) of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night) and symmetric warming (+5/+5°C at day/night), simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature), maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies.  相似文献   

12.
Demel Teketay   《Flora》2002,197(1)
The germination responses of Discopodium penninervium were tested at different constant and alternating temperature regimes as well as under various light conditions both in the laboratory and glasshouse. Seeds incubated at 10, 15, 20, 25 and 30 °C failed to germinate. When the seeds were incubated at alternating temperatures of 20/12 °C and 30/12 °C under continuous light, germination was 89 and 61%, indicating that the species requires alternating temperatures as a cue for germination. However, germination declined as the amplitude of alternating temperatures increased from 8 °C and was completely inhibited at an amplitude of 23 °C, suggesting that the optimum amplitude is around 8 °C. Germination was less than 10% in light and nil in darkness at 20 °C in the laboratory. In contrast, seeds incubated at 20/12 °C germinated to 96 and 86% in light and darkness, respectively. Seeds incubated under leaf shade in the glasshouse failed to germinate whereas those incubated under direct daylight and darkness germinated to 44 and 50%, respectively, 30 days after sowing. When seeds incubated under leaf shade and in darkness were exposed afterwards to light, final percent germination was 83% from seeds incubated initially under direct daylight, 79% from those incubated under leaf shade and 86% from those incubated in darkness. The requirement for alternating temperatures and light rich in red:far red ratio to break the dormancy of seeds of D. penninervium could restrict germination to gaps in the vegetation. The results conform with the ecology of the species.  相似文献   

13.
Effects of Fluctuating Temperatures on Germination   总被引:4,自引:0,他引:4  
Germination responses to alternating daily cycles involvingtransfers between different temperatures over the range 0 toc. 40?C were investigated in four species: Lycopus europaeusL., Clarkia unguiculata Lindl., Apium graveolens L. cv. GiantRed, and Silene dioica (L.) Clairv. Comparisons of the germination of these species revealed distinctivedifferences which could be related to particular features ofthe geographical regions or ecological habitats in which theyoccur naturally. The effects of fluctuating as opposed to constant temperaturesvaried from one species to another. L. europaeus depended almostabsolutely on fluctuating temperatures for germination. Germinationof S. dioica was greatly increased by fluctuating temperatures.Moderate increases occurred over a restricted temperature rangein A. graveolens cv. Giant Red and C. unguiculata was affectedin only minor ways. These results are discussed in relationto previous attempts to explain the mechanisms responsible forthe frequently beneficial effects of fluctuating temperatureson germination.  相似文献   

14.
Magnolia sinica is one of the most endangered Magnoliaceae species in China. Seed biology information concerning its long-term ex situ conservation and utilization is insufficient. This study investigated dormancy status, germination requirements and storage behavior of M. sinica. Freshly matured seeds germinated to ca. 86.5% at 25/15 °C but poorly at 30 °C; GA3 and moist chilling promoted germination significantly at 20 °C. Embryos grew at temperatures (alternating or constant) between 20 °C and 25 °C, but not at 5 °C or 30 °C. Our results indicate that M. sinica seeds possibly have non-deep simple morphophysiological dormancy (MPD). Seeds survived desiccation to 9.27% and 4.85% moisture content (MC) as well as a further 6-month storage at −20 °C and in liquid nitrogen, including recovery in vitro as excised embryos. The established protocol ensured that at least 58% of seedlings were obtained after both cold storage and cryopreservation. These results indicate that both conventional seed banking and cryopreservation have potential as long-term ex situ conservation methods, although further optimized approaches are recommended for this critically endangered magnolia species.  相似文献   

15.
The germination of Lycopus europaeus seeds depends absolutelyon exposure to light and fluctuating temperatures. Studies oftemperature responses were made to establish the minimum fluctuationrequired for a response, the interaction of temperature andexposure time in different parts of the alternating temperaturecycle, and the effects of successive transfers between cyclingtemperature conditions. There was a complex interaction betweenthese three. The minimum fluctuation never fell below 6.5 °Cbut varied up to c. 15 °C according to other test conditions.High temperatures favoured rapid responses, and exposure totemperatures above 20 °C in one or other phase of the temperaturecycle was essential for a full response. No response occurredeither at any temperature under constant conditions, or if onlyone temperature change was given. Under some conditions a singlecycle of alternating temperatures, including two changes oftemperature, promoted high germination rates.  相似文献   

16.
Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range.  相似文献   

17.
The effects of temperature on pollen germination and pollen tube growth rate were measured in vitro in thermogenic skunk cabbage, Symplocarpus renifolius Schott ex Tzvelev, and related to floral temperatures in the field. This species has physiologically thermoregulatory spadices that maintain temperatures near 23°C, even in sub-freezing air. Tests at 8, 13, 18, 23, 28 and 33°C showed sharp optima at 23°C for both variables, and practically no development at 8°C. Thermogenesis is therefore a requirement for fertilization in early spring. The narrow temperature tolerance is probably related to a long period of evolution in flowers that thermoregulate within a narrow range.  相似文献   

18.
Cotton fibers (Gossypium hirsutum L.) developing in vitro responded to cyclic temperature change similarly to those of field-grown plants under diumal temperature fluctuations. Absolute temperatures and rates of temperature change were similar under both conditions. In vitro fibers exhibited a “growth ring” for each time the temperature cycled to 22 or 15°C. Rings were rarely detected when the low point was 28°C. The rings seemed to correspond to alternating regions of high and low cellulose accumulation. Fibers developed in vitro under 34°C/22°C cycling developed similarly to constant 34°C controls, but 34°C/22°C and 34°C/15°C cycling caused delayed onset and prolonged periods of elongation and secondary wall thickening. Control fiber length and weight were finally achieved under 34°C/22°C cycling, but both parameters were reduced at the end of the experiment under 34°C/15°C cycling. Fibers developed under all conditions had equal bundle tensile strength. These results demonstrate that: (a) cool temperature effects on fiber development are at least partly fiber/ovule-specific events; they do not depend on whole-plant physiology; and (b) cultured ovules are valid models for research on the regulation of the field cool temperature response.  相似文献   

19.
The temperature-driven adaptation of the bacterial community in peat was studied, by altering temperature to simulate self-heating and a subsequent return to mesophilic conditions. The technique used consisted of extracting the bacterial community from peat using homogenization-centrifugation and measuring the rates of thymidine (TdR) or leucine (Leu) incorporation by the extracted bacterial community at different temperatures. Increasing the peat incubation temperature from 25°C to 35, 45, or 55°C resulted in a selection of bacterial communities whose optimum temperatures for activity correlated to the peat incubation temperatures. Although TdR and Leu incorporations were significantly correlated, the Leu/TdR incorporation ratios were affected by temperature. Higher Leu/TdR incorporation ratios were found at higher temperatures of incubation of the extracted bacterial community. Higher Leu/TdR incorporation ratios were also found for bacteria in peat samples incubated at higher temperatures. The reappearance of the mesophilic community and disappearance of the thermophilic community when the incubation temperature of the peat was shifted down were monitored by measuring TdR incorporation at 55°C (thermophilic activity) and 25°C (mesophilic activity). Shifting the peat incubation temperature from 55 to 25°C resulted in a recovery of the mesophilic activity, with a subsequent disappearance of the thermophilic activity. The availability of substrate for bacterial growth varied over time and among different peat samples. To avoid confounding effects of substrate availability, a temperature adaptation index was calculated. This index consisted of the log10 ratio of TdR incorporation at 55 and 25°C. The temperature index decreased linearly with time, indicating that no thermophilic activity would be detected by the TdR technique 1 month after the temperature downshift. There were no differences between the slopes of the temperature adaptation indices over time for peat samples incubated at 55°C 3 or 11 days before incubation at 25°C. Thus, different levels of bacterial activity did not affect the temperature-driven adaptation of the bacterial community.  相似文献   

20.
Germination of lettuce seeds (Lactuca sativa L. cv Grand Rapids) in the dark was nearly 100% at 20°C but was inhibited at 27°C and higher temperatures (thermoinhibition). A single 5-minute exposure to red light completely overcame the inhibition at temperatures up to 28°C, above which the effectiveness of single light exposures gradually declined to reach a negligible level at 32°C. However, the promotive effect of light could be extended to 34°C by repeated irradiations. At any one temperature, increased frequency of irradiations increased germination percentage, and with each degree increase in temperature, increasingly frequent irradiations were necessary to elicit maximal germination. Loss of the effectiveness of single irradiations with increase in temperature may result either from acceleration of the thermal reversion of the far red-absorbing form of phytochrome or decrease in seed sensitivity toward a given percentage of the far red-absorbing form of phytochrome. Using continuous red light to induce germination, the role of endogenous C2H4 in germination at 32°C was studied. Ethylene evolution from irradiated seeds began to increase 2 hours prior to radicle protrusion, whereas the dark-incubated (nongerminating) seeds produced a low, constant amount of C2H4 throughout the 24 hour incubation period. Inhibition of C2H4 synthesis with 2-aminoethoxyvinyl glycine and/or inhibition of C2H4 action with 2,5-norbornadiene blocked the promotive effect of light. Exogenous C2H4 overcame these blockages. The results showed that participation by endogenous C2H4 was essential for the light-induced relief of thermoinhibition of lettuce seed germination. However, light did not act exclusively via C2H4 since exogenous C2H4 alone in darkness did not promote germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号