首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single channel recordings from the locust muscle D-glutamate receptor channel were obtained using glutamate concentrations ranging from 10-6 to 10-2 M. Channel kinetics were analyzed to aid in the development of a model for the gating mechanism. Analysis of channel dwell time histograms demonstrated that the channel possessed multiple open and closed states at concentrations of glutamate between 10-5 and 10-2 M. Correlations between successive dwell times showed that the gating mechanism was nonlinear (i.e., branched or cyclic) over the same glutamate concentration range. The glutamate concentration dependence of the channel open probability, and of the event frequency, was used to explore two possible allosteric gating mechanisms in more detail.  相似文献   

2.
The ATP-dependent uptake of L-glutamate into synaptic vesicles has been well characterized, implicating a key role for synaptic vesicles in glutamatergic neurotransmission. In the present study, we provide evidence that vesicular glutamate uptake is selectively inhibited by the peptide-containing halogenated ergot bromocriptine. It is the most potent inhibitor of the agents tested: the IC50 was determined to be 22 microM. The uptake was also inhibited by other ergopeptines such as ergotamine and ergocristine, but with less potency. Ergots devoid of the peptide moiety, however, such as ergonovine, lergotrile, and methysergide, had little or no effect. Although bromocriptine is known to elicit dopaminergic and serotonergic effects, its inhibitory effect on vesicular glutamate uptake was not mimicked by agents known to interact with dopamine and serotonin receptors. Kinetic data suggest that bromocriptine competes with glutamate for the glutamate binding site on the glutamate translocator. It is proposed that this inhibitor could be useful as a prototype probe in identifying and characterizing the vesicular glutamate translocator, as well as in developing a more specific inhibitor of the transport system.  相似文献   

3.
4.
Glutamate, the major excitatory neurotransmitter in the vertebrate brain, is a potent neurotoxin therefore its extracellular levels have to be tightly regulated by means of sodium-dependent glutamate uptake systems of the slc1A family. The glial glutamate/aspartate transporter (GLAST/EAAT1) and the glutamate transporter 1 carry most of the uptake activity in cerebellum and in the forebrain, respectively. In the cerebellar cortex, GLAST is profusely expressed in Bergmann glia cells, which completely enwrap the parallel fiber-Purkinje cells synapses. Glutamate exposure in these cells, down regulates the activity as well as the expression levels of this transporter. In order to characterize the persistence of a single glutamate exposure, we followed the [3H]-d-aspartate uptake activity as a function of time after the removal of the glutamatergic stimulus. We were able to demonstrate that a single 30 min exposure to glutamate reduces the uptake activity for up to 3 h. This effect is dose-dependent and it is not reproduced neither by ionotropic nor metabotropic glutamate receptors agonists. In contrast, transporter specific ligands such as d-aspartate or l-(?)-threo-3-Hydroxyaspartic acid fully reproduce the glutamate effect. Equilibrium binding experiments revealed a decrease in [3H]-d-aspartate Bmax without a significant change in affinity, clearly suggesting that a reduction in the availability of plasma membrane glutamate transporters is the molecular basis of this effect. Interestingly, neither Glast mRNA nor its protein levels were significantly reduced upon the single glutamate exposure. Taken together, these results favor the notion of a transporter-mediated tight control of the uptake process.  相似文献   

5.
Lysophosphatidic Acid Decreases Glutamate and Glucose Uptake by Astrocytes   总被引:4,自引:0,他引:4  
Abstract: The brain is a rich source of the lipid biomediator lysophosphatidic acid, and lysophosphatidic acid levels can significantly increase following brain trauma. Responses of primary rat brain astrocytes to this novel lipid are defined in the current study. Treatment of cells with lysophosphatidic acid resulted in a time- and dose-dependent inhibition of glutamate uptake. Inhibition of glutamate uptake was specific because the related phospholipids, phosphatidic acid, lysophosphatidylcholine, and lysophosphatidylglycerol, did not inhibit this uptake under comparable conditions, i.e., treatment with 10 µ M lipid for 30 min. Lysophosphatidic acid treatment of cells resulted in an increase in lipid peroxidation, as measured by the thiobarbituric acid assay. This increase in content of thiobarbituric acid-reactive substances was largely inhibited by treatment with dithiothreitol or propyl gallate; however, such treatment did not affect the lysophosphatidic acid-induced inhibition of glutamate uptake. Lysophosphatidic acid also inhibited glucose uptake with a dose-response curve that paralleled the inhibition of glutamate uptake. By impairing uptake of glutamate by astrocytes, lysophosphatidic acid may exacerbate excitotoxic processes in various neurodegenerative conditions.  相似文献   

6.
The effect of L-glutamate (Glu) and its structural analogs N-methyl-D-aspartate (NMDA), kainate (KA) and -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), on the activation of p42 mitogen activated protein kinase (MAPK) was examined in cultured chick radial glia cells, namely retinal Müller cells and cerebellar Bergmann cells. Glu, NMDA, AMPA and KA evoked a dose and time dependent increase in MAPK activity. AMPA and KA responses were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) whereas NMDA responses were sensitive to 3-[(RS)-2-carboxypiperazin-4-yl)]-propyl-1-phosphonate (CPP) indicating that the increase in MAPK activity is mediated by AMPA/low affinity KA and NMDA subtypes of Glu receptors. The present findings open the possibility of a MAPK cascade involvement in the regulation of Glu-induced gene expression in radial glia.  相似文献   

7.
We have demonstrated previously that L-glutamate is taken up into isolated synaptic vesicles in an ATP-dependent manner, supporting the neurotransmitter role of this acidic amino acid. We now report that a nerve terminal cytosolic factor inhibits the ATP-dependent vesicular uptake of glutamate in a dose-dependent manner. This factor appears to be a protein with a molecular weight greater than 100,000, as estimated by size exclusion chromatography, and is precipitated by ammonium sulfate (40% saturation). The inhibitory factor is inactivated by heating to 100 degrees C. Proteolytic digestion of the ammonium sulfate fraction by trypsin or chymotrypsin did not reduce, but rather increased slightly, the inhibition of glutamate uptake. Unlike the native factor, the digest retained inhibitory activity after heating, suggesting that proteolytic digestion may generate active fragments. The inhibition of ATP-dependent vesicular glutamate uptake is not species-specific, as the factor obtained from both rat and bovine brains produced an equal degree of inhibition of glutamate uptake into vesicles of each species. These observations raise the possibility that vesicular uptake of glutamate may be regulated by an endogenous factor in vivo.  相似文献   

8.
在线推定和控制葡萄糖浓度改善谷氨酸发酵性能   总被引:1,自引:0,他引:1  
谷氨酸发酵过程一般需要定时、人工分批式地添加葡萄糖。该流加操作方式会引起发酵罐内葡萄糖浓度的剧烈波动, 不利于高效、稳定的谷氨酸生产。谷氨酸发酵具有显著的非增殖耦联特征, 产酸期葡萄糖耗量与氨水耗量存在非常明显的关联性。通过在线计量氨水耗量推定糖耗以及葡萄糖浓度, 可比较准确地将谷氨酸发酵产酸期的糖浓度控制在预先设定的水平。当糖浓度控制在5 g/L~10 g/L的低水平时, 最终谷氨酸浓度可以达到80 g/L的较高水平, 高糖浓度下的渗透压效应有望得到缓解, 有利于发酵生产的稳定。  相似文献   

9.
Excitotoxicity has been implicated in the retinal neuronal loss in several ocular pathologies including glaucoma. Dysfunction of Excitatory Amino Acid Transporters is often a key component of the cascade leading to excitotoxic cell death. In the retina, glutamate transport is mainly operated by the glial glutamate transporter GLAST and the neuronal transporter GLT-1. In this study we evaluated the expression of GLAST and GLT-1 in a rat model of acute glaucoma based on the transient increase of intraocular pressure (IOP) and characterized by high glutamate levels during the reperfusion that follows the ischemic event associated with raised IOP. No changes were reported in GLAST expression while, at neuronal level, a reduction of glutamate uptake and of transporter reversal-mediated glutamate release was observed in isolated retinal synaptosomes. This was accompanied by modulation of GLT-1 expression leading to the reduction of the canonical 65 kDa form and upregulation of a GLT-1-related 38 kDa protein. These results support a role for neuronal transporters in glutamate accumulation observed in the retina following an ischemic event and suggest the presence of a GLT-1 neuronal new alternative splice variant, induced in response to the detrimental stimulus.  相似文献   

10.
Conserving tropical ecosystems is one of the foremost challenges of the 21st century. Lately, conservation efforts have focused on advancing conservation through dialogue and interaction with and among diverse stakeholders. Knowledge sharing, and specifically the transfer of scientific knowledge, can raise ecological awareness among stakeholders and is necessary to facilitate dialogue, yet the communication of tropical scientific research to local stakeholders is rarely effectively implemented. Such a communication gap potentially undermines the conservation and management of natural resources. The papers in this special section highlight the difficulties and benefits of sharing ecological knowledge, as well as the underlying reasons for why a research–implementation gap has arisen.  相似文献   

11.
Molecular diffusion and transport are fundamental processes in physical, chemical, biochemical, and biological systems. However, current approaches to measure molecular transport in cells and tissues based on perturbation methods such as fluorescence recovery after photobleaching are invasive, fluctuation correlation methods are local, and single-particle tracking requires the observation of isolated particles for relatively long periods of time. We propose to detect molecular transport by measuring the time cross-correlation of fluctuations at a pair of locations in the sample. When the points are farther apart than two times the size of the point spread function, the maximum of the correlation is proportional to the average time a molecule takes to move from a specific location to another. We demonstrate the method by simulations, using beads in solution, and by measuring the diffusion of molecules in cellular membranes. The spatial pair cross-correlation method detects barriers to diffusion and heterogeneity of diffusion because the time of the correlation maximum is delayed in the presence of diffusion barriers. This noninvasive, sensitive technique follows the same molecule over a large area, thereby producing a map of molecular flow. It does not require isolated molecules, and thus many molecules can be labeled at the same time and within the point spread function.  相似文献   

12.
Abstract: Nitric oxide (NO; including NO, NO+, and NO) was found to inhibit glutamate uptake by isolated synaptic vesicles of rat brain. This was observed when two unrelated NO donors, S -nitrosogluthathione and S -nitroso- N -acetylpenicillamine, were used. The primary target of NO is the H+-ATPase found in the synaptic vesicles, which leads to dissipation of the electrochemical proton gradient and inhibition of glutamate uptake. Oxyhemoglobin (12 µ M ) and, to a much lesser extent, methemoglobin protected the vacuolar H+-ATPase from inhibition. Inhibition of H+ pumping by NO was reversed by addition of 0.5 m M dithiothreitol. The results indicate that the vacuolar H+-ATPase from synaptic vesicles is inhibited by NO by a mechanism that involves S -nitrosylation of critical sulfhydryl groups in the enzyme. The interaction of NO with synaptic vesicles might be of importance for the understanding of the multiple effects of NO in neurotransmission.  相似文献   

13.
Abstract: Activation of metabotropic glutamate receptors (mGluRs) in glia results in significant physiological effects for both the glia and the neighboring neurons; but in many cases, the mGluR subtypes and signal transduction mechanisms mediating these effects have not been determined. In this study, we report that mGluR activation in primary cultures of rat cortical glia results in tyrosine phosphorylation of several proteins, including p44/p42 mitogen-activated protein kinases, also referred to as extracellular signal-regulated kinases (ERK1/2). Incubation of glial cultures with the general mGluR agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylate and the mGluR group I-selective agonists ( RS )-3,5-dihydroxyphenylglycine (DHPG) and l -quisqualate resulted in increased tyrosine phosphorylation of ERK1/2. The group II-selective agonist (2 S ,2' R ,3' R )-2-(2',3'-dicarboxycyclopropyl)glycine and group III-selective agonist l (+)-2-amino-4-phosphonobutyric acid had no effect on tyrosine phosphorylation. DHPG-induced ERK1/2 phosphorylation could be inhibited by an antagonist that acts at group I or group II mGluRs but not by antagonists for group II and group III mGluRs. Protein kinase C (PKC) activators also induced ERK1/2 phosphorylation, but the PKC inhibitor bisindolylmaleimide I did not inhibit DHPG-induced ERK1/2 phosphorylation at a concentration that inhibited the response to phorbol 12,13-dibutyrate. These data suggest that mGluR activation of ERK1/2 in cultured glia is mediated by group I mGluRs and that this effect is independent of PKC activation. Furthermore, immunoblots with antibodies against various mGluR subtypes show expression of mGluR5, but no other mGluRs in our cultures. Taken together, these results suggest that mGluR5 stimulation results in tyrosine phosphorylation of ERK1/2 and other glial proteins.  相似文献   

14.
We investigated effects of Ebselen, diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 on [3H]glutamate uptake and release by brain synaptosomes. Ebselen after acute exposure inhibited K+-stimulated [3H]glutamate release by brain synaptosomes. (PhSe)2 and (PhTe)2 did not change [3H]glutamate release by brain synaptosomes. Ebselen, (PhSe)2 and (PhTe)2 had no significantly effects on [3H]glutamate uptake after acute exposure. In vitro, Ebselen (100 M) inhibited [3H]glutamate release and uptake. (PhSe)2 had no significant effect, while (PhTe)2 (100 M) inhibited [3H]glutamate uptake by brain synaptosomes. In vitro, (PhSe)2, (PhTe)2 and Ebselen caused a significant inhibition of [3H]glutamate uptake by brain synaptic vesicles in vitro. The results demonstrated that organochalcogenides have a rather complex effect on glutamate homeostasis depending on the compound and the schedule of exposition. We propose that the neuroprotective action of Ebselen can be related, in addition to its glutathione peroxidase-like and antilipoperoxidative activity, to a direct interaction with the glutamatergic system by reducing Kï-evoked glutamate release.  相似文献   

15.
Abstract A possible involvement of amino acid uptake mechanisms in the etiology of the human neurodegenerative disease, Huntington's disease (HD), was investigated. Measurement of glutamate (Glu) and aspartate (Asp) uptake was performed in blood platelets, which have previously been shown to constitute a peripheral model system for central amino acid uptake processes. Analyses of Glu and Asp accumulation at 10−7 M and kinetic examination of the high affinity site for Glu indicate no significant differences between control and HD platelets. A genetically determined defect in amino acid uptake therefore does not seem to underlie the nerve cell loss observed in HD patients.  相似文献   

16.
Anxiety-related disorders are a common public health issue. Several lines of evidence suggest that altered glutamatergic neurotransmission underlies anxiety. The present study evaluated the effect of diphenyl ditelluride [(PhTe)2] exposure on the behavioral performance of rats and examined whether the behavioral effects could be attributed to changes in the modulation of glutamatergic function. Rats were exposed to (PhTe)2 (subcutaneously) during 8 weeks—final dose one third LD50 (124 μg/kg). The testing schedule included elevated plus-maze, open-field, T-maze, rotorod, and Morris water maze tests. Synaptosomal basal [3H] glutamate release and uptake were also evaluated. The time spent in the open arm and the ratio of time spent in the open arm/total were decreased in the (PhTe)2 group. Furthermore, the [3H] glutamate uptake was decreased in this experimental group. The results suggest that exposure to (PhTe)2 did not change motor abilities whereas it may result in anxiogenic-like behavior, induced by changes in the glutamatergic system at the pre-synaptic level.  相似文献   

17.
High-affinity L-glutamate (GLU) transport is an important regulator of excitatory amino acid (EAA) concentrations in brain extracellular fluid and may play a key role in excitatory synaptic transmission. In view of evidence that EAA transporters (EAAT) are heterogenous and contain consensus sites for phosphorylation, this investigation was undertaken to contrast the effects of transporter phosphorylation in fractions derived from glia and neurons (synaptosomes) of the adult rat forebrain. Treatment with phorbol-12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC), increased the maximal rate of GLU transport in glial plasmalemmal vesicles by greater than 50 percent (237 ± 18 vs. 365 ± 27 pmol/mg protein/90s, p < 0.05) but caused no change in synaptosomes. The effect by PDBu was concentration and time-dependent and was inhibited completely by the PKC inhibitor calphostin C. Inhibition of serine-threonine phosphoprotein phosphatases with okadaic acid produced similar effects which were not additive with PDBu. Together, these results demonstrate that glial EAAT can be regulated by multiple phosphorylation processes.  相似文献   

18.
Methylamine1 is taken up rapidly by disks cut from fronds ofUlva rigida (‘Ulva lactuca’) and can be accumulatedat concentrations several hundred times greater than those inthe bathing medium. At pH 8.0 (the pH of sea-water) the relationshipbetween influx and concentration is normally linear up to 0.1–0.3mM, followed by a second, less steep linear phase, the slopeof which decreases or increases with decreasing or increasingexternal pH. When pH is greater than 9.0, however, net uptakesoon ceases. Methylamine influx is greatly reduced at low temperature,by low concentrations of ammonia and, depending on the lengthof storage of the material, by darkness. Influx is also greatlyreduced when disks are pretreated in solutions containing ammoniaand to a much lesser extent when they are pretreated in methylamine,imidazol or nitrate. Methylamine influx lowers intracellularK+, increases Cl and has no effect on Na+. We suggestthat the first linear phase of influx versus concentration reflectsthe operation of an amine cation porter that is rate-limitedby diffusion of CH3NH3+ through the external unstirred layer,and that the second phase is due to diffusion of CH3NH2 intothe tissue.  相似文献   

19.
Abstract: Uptake and metabolism of glutamate was studied in the C-6 glioma cell line grown in the absence or presence of dibutyryl cyclic AMP (dbcAMP). Glutamate and aspartate uptake were competitive in cells grown under both conditions. Increased [K+] in the medium caused a significant decrease in the uptake of both amino acids. A small part of this decrease (<25%) was due to an enhanced efflux of tissue amino acid. The effects of increased [K+] were observed whether or not the [Na+] in the medium was concomitantly decreased. In cells grown in the presence of 1 mM dbcAMP for 48 h, glutamate uptake and metabolism were altered. Tissue levels of glutamate, aspartate, glutamine, GABA, and alanine were generally less in treated than in naive cells. When incubated with 50 μM [U-14C]glutamate, there was significantly less incorporation of radioactivity into treated cells with time, resulting in greatly lowered specific radioactivities of glutamate, aspartate, and GABA. However, the rate of labeling of glutamine was greatly increased; this was consistent with the previously observed doubling in glutamine synthetase activity in dbcAMP-treated C-6 cells. Tissue glutamate decarboxylase activity was halved in treated cells, accounting for the large decrease in GABA labeling. The metabolic data suggested a decreased uptake of exogenous glutamate; in studies on initial rates of uptake, the Vmax of high-affinity glutamate uptake was decreased by 40%. This decrease was of the same order of magnitude as that observed in the metabolic experiments. Thus, in this glial model, both rapid, acute changes and slower, long-term changes in neuroactive amino acid metabolism were observed. Each of these conditions mimics a stimulus of neuronal origin, and the resulting changes could modulate extrasynaptic activity of neuroactive amino acids.  相似文献   

20.
Statins have been shown to promote neuroprotection in a wide range of neurological disorders. However, the mechanisms involved in such effects of statins are not fully understood. Quinolinic acid (QA) is a neurotoxin that induces seizures when infused in vivo and promotes glutamatergic excitotoxicity in the central nervous system. The aim of this study was to evaluate the putative glutamatergic mechanisms and the intracellular signaling pathways involved in the atorvastatin neuroprotective effects against QA toxicity. Atorvastatin (10 mg/kg) treatment for 7 days prevented the QA-induced decrease in glutamate uptake, but had no effect on increased glutamate release induced by QA. Moreover, atorvastatin treatment increased the phosphorylation of ERK1 and prevented the decrease in Akt phosphorylation induced by QA. Neither atorvastatin treatment nor QA infusion altered glutamine synthetase activity or the levels of phosphorylation of p38MAPK or JNK1/2 during the evaluation. Inhibition of MEK/ERK signaling pathway, but not PI3K/Akt signaling, abolished the neuroprotective effect of atorvastatin against QA-induced decrease in glutamate uptake. Our data suggest that atorvastatin protective effects against QA toxicity are related to modulation of glutamate transporters via MAPK/ERK signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号