首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called ‘L12 stalk’ on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the ‘L12 stalk’. The ‘L12 stalk’ plays a key role in the interaction of the ribosome with translation factors. In this study stalk complexes from mesophilic and (hyper)thermophilic species of the archaeal genus Methanococcus and from the Archaeon Sulfolobus solfataricus, as well as from the Bacteria Escherichia coli, Geobacillus stearothermophilus and Thermus thermophilus, were overproduced in E.coli and purified under non-denaturing conditions. Using filter-binding assays the affinities of the archaeal and bacterial complexes to their specific 23S rRNA target site were analyzed at different pH, ionic strength and temperature. Affinities of both archaeal and bacterial complexes for 23S rRNA vary by more than two orders of magnitude, correlating very well with the growth temperatures of the organisms. A cooperative effect of binding to 23S rRNA of protein L11 and the L10/L124 complex from mesophilic and thermophilic Archaea was shown to be temperature-dependent.  相似文献   

2.
The small subunit (SSU) of the ribosome of E. coli consists of a core of ribosomal RNA (rRNA) surrounded peripherally by ribosomal proteins (r-proteins). Ten of the 15 universally conserved SSU r-proteins possess nonglobular regions called extensions. The N-terminal noncanonically structured extension of S12 traverses from the solvent to intersubunit surface of the SSU and is followed by a more C-terminal globular region that is adjacent to the decoding center of the SSU. The role of the globular region in maintaining translational fidelity is well characterized, but a role for the S12 extension in SSU structure and function is unknown. We examined the effect of stepwise truncation of the extension of S12 in SSU assembly and function in vitro and in vivo. Examination of in vitro assembly in the presence of sequential N-terminal truncated variants of S12 reveals that N-terminal deletions of greater than nine amino acids exhibit decreased tRNA-binding activity and altered 16S rRNA architecture particularly in the platform of the SSU. While wild-type S12 expressed from a plasmid can rescue a genomic deletion of the essential gene for S12, rpsl; N-terminal deletions of S12 exhibit deleterious phenotypic consequences. Partial N-terminal deletions of S12 are slow growing and cold sensitive. Strains bearing these truncations as the sole copy of S12 have increased levels of free SSUs and immature 16S rRNA as compared with the wild-type S12. These differences are hallmarks of SSU biogenesis defects, indicating that the extension of S12 plays an important role in SSU assembly.  相似文献   

3.
The ribosome is a large macromolecular complex that must be assembled efficiently and accurately for the viability of all organisms. In bacteria, this process must be robust and tunable to support life in diverse conditions from the ice of arctic glaciers to thermal hot springs. Assembly of the Small ribosomal SUbunit (SSU) of Escherichia coli has been extensively studied and is highly temperature-dependent. However, a lack of data on SSU assembly for other bacteria is problematic given the importance of the ribosome in bacterial physiology. To broaden the understanding of how optimal growth temperature may affect SSU assembly, in vitro SSU assembly of two thermophilic bacteria, Geobacillus kaustophilus and Thermus thermophilus, was compared with that of E. coli. Using these phylogenetically, morphologically, and environmentally diverse bacteria, we show that SSU assembly is highly temperature-dependent and efficient SSU assembly occurs at different temperatures for each organism. Surprisingly, the assembly landscape is characterized by at least two distinct intermediate populations in the organisms tested. This novel, second intermediate, is formed in the presence of the full complement of r-proteins, unlike the previously observed RI* particle formed in the absence of late-binding r-proteins in E. coli. This work reveals multiple distinct intermediate populations are present during SSU assembly in vitro for several bacteria, yielding insights into RNP formation and possible antimicrobial development toward this common SSU target.  相似文献   

4.
Tetracycline blocks stable binding of aminoacyl-tRNA to the bacterial ribosomal A-site. Various tetracycline binding sites have been identified in crystals of the 30S ribosomal small subunit of Thermus thermophilus. Here we describe a direct photo- affinity modification of the ribosomal small subunits of Escherichia coli with 7-[3H]-tetracycline. To select for specific interactions, an excess of the 30S subunits over tetracycline has been used. Primer extension analysis of the 16S rRNA revealed two sites of the modifications: C936 and C948. Considering available data on tetracycline interactions with the prokaryotic 30S subunits, including the presented data (E.coli), X-ray data (T.thermophilus) and genetic data (Helicobacter pylori, E.coli), a second high affinity tetracycline binding site is proposed within the 3′-major domain of the 16S rRNA, in addition to the A-site related tetracycline binding site.  相似文献   

5.
The relationship between inherent internal conformational processes and enzymatic activity or thermodynamic stability of proteins has proven difficult to characterize. The study of homologous proteins with differing thermostabilities offers an especially useful approach for understanding the functional aspects of conformational dynamics. In particular, ribonuclease HI (RNase H), an 18 kD globular protein that hydrolyzes the RNA strand of RNA:DNA hybrid substrates, has been extensively studied by NMR spectroscopy to characterize the differences in dynamics between homologs from the mesophilic organism E. coli and the thermophilic organism T. thermophilus. Herein, molecular dynamics simulations are reported for five homologous RNase H proteins of varying thermostabilities and enzymatic activities from organisms of markedly different preferred growth temperatures. For the E. coli and T. thermophilus proteins, strong agreement is obtained between simulated and experimental values for NMR order parameters and for dynamically averaged chemical shifts, suggesting that these simulations can be a productive platform for predicting the effects of individual amino acid residues on dynamic behavior. Analyses of the simulations reveal that a single residue differentiates between two different and otherwise conserved dynamic processes in a region of the protein known to form part of the substrate-binding interface. Additional key residues within these two categories are identified through the temperature-dependence of these conformational processes.  相似文献   

6.
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.  相似文献   

7.
8.
Ribonucleoprotein particles (RNPs) are important components of all living systems, and the assembly of these particles is an intricate, often multistep, process. The 30 S ribosomal subunit is composed of one large RNA (16 S rRNA) and 21 ribosomal proteins (r-proteins). In vitro studies have revealed that assembly of the 30 S subunit is a temperature-dependent process involving sequential binding of r-proteins and conformational changes of 16 S rRNA. Additionally, a temperature-dependent conformational rearrangement was reported for a complex of primary r-protein S4 and 16 S rRNA. Given these observations, a systematic study of the temperature-dependence of 16 S rRNA architecture in individual complexes with the other five primary binding proteins (S7, S8, S15, S17, and S20) was performed. While all primary binding r-proteins bind 16 S rRNA at low temperature, not all r-proteins/16 S rRNA complexes undergo temperature-dependent conformational rearrangements. Some RNPs achieve the same conformation regardless of temperature, others show minor adjustments in 16 S rRNA conformation upon heating and, finally, others undergo significant temperature-dependent changes. Some of the architectures achieved in these rearrangements are consistent with subsequent downstream assembly events such as assembly of the secondary and tertiary binding r-proteins. The differential interaction of 16 S rRNA with r-proteins illustrates a means for controlling the sequential assembly pathway for complex RNPs and may offer insights into aspects of RNP assembly in general.  相似文献   

9.
Structural studies of the ribosome have benefited greatly from the use of organisms adapted to extreme environments. However, little is known about the mechanisms by which ribosomes or other ribonucleoprotein complexes have adapted to functioning under extreme conditions, and it is unclear to what degree mutant phenotypes of extremophiles will resemble those of their counterparts adapted to more moderate environments. It is conceivable that phenotypes of mutations affecting thermophilic ribosomes, for instance, will be influenced by structural adaptations specific to a thermophilic existence. This consideration is particularly important when using crystal structures of thermophilic ribosomes to interpret genetic results from nonextremophilic species. To address this issue, we have conducted a survey of spontaneously arising antibiotic-resistant mutants of the extremely thermophilic bacterium Thermus thermophilus, a species which has featured prominently in ribosome structural studies. We have accumulated over 20 single-base substitutions in T. thermophilus 16S and 23S rRNA, in the decoding site and in the peptidyltransferase active site of the ribosome. These mutations produce phenotypes that are largely identical to those of corresponding mutants of mesophilic organisms encompassing a broad phylogenetic range, suggesting that T. thermophilus may be an ideal model system for the study of ribosome structure and function.  相似文献   

10.
Structural studies have revealed that the core of the ribosome structure is conserved among ribosomes of all kingdoms. Kingdom-specific ribosomal proteins (r-proteins) are located in peripheral parts of the ribosome. In this work, the interactions between rRNA and r-proteins of eukaryote Saccharomyces cerevisiae ribosome were investigated applying LiCl induced splitting and quantitative mass spectrometry. R-proteins were divided into four groups according to their binding properties to the rRNA. Most yeast r-proteins are removed from rRNA by 0.5–1 M LiCl. Eukaryote-specific r-proteins are among the first to dissociate. The majority of the strong binders are known to be required for the early ribosome assembly events. As compared to the bacterial ribosome, yeast r-proteins are dissociated from rRNA at lower ionic strength. Our results demonstrate that the nature of protein-RNA interactions in the ribosome is not conserved between different kingdoms.  相似文献   

11.
12.
Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.  相似文献   

13.
Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.  相似文献   

14.
The gene encoding the ribosomal protein from Thermus thermophilus, TL5, which binds to the 5S rRNA, has been cloned and sequenced. The codon usage shows a clear preference for G/C rich codons that is characteristic for many genes in thermophilic bacteria. The deduced amino acid sequence consists of 206 residues. The sequence of TL5 shows a strong similarity to a general shock protein from Bacillus subtilis, named CTC. The protein CTC is homologous in its N-terminal part to the 5S rRNA binding protein, L25, from E coli. An alignment of the TL5, CTC and L25 sequences displays a number of residues that are totally conserved. No clear sequence similarity was found between TL5 and other proteins which are known to bind to 5S rRNA. The evolutionary relationship of a heat shock protein in mesophiles and a ribosomal protein in thermophilic bacteria as well as a possible role of TL5 in the ribosome are discussed.  相似文献   

15.
Summary. Protein L4 from the thermophilic bacterium Thermus thermophilus (TthL4) was heterologously overproduced in Escherichia coli cells and purified under native conditions by using ion exchange chromatography. Although it’s known strong binding to RNA (23S rRNA as well as mRNA) the yield of the purified protein was 6 mg per 10 g of cells and it is similar to that referred for Thermotoga maritima L4 ribosomal protein. In addition, E. coli cells harboring the wild type Thermus thermophilus L4 (wtTthL4) ribosomal protein as well as its mutant having changed the highly conserved glutamic acid 56 by alanine (TthL4-Ala 56) were incorporated into E. coli ribosomes after transformation of the host cells with the recombined vector. The cells having incorporated the mutant TthL4-Ala56 are more sensitive against erythromycin related to that containing the wtTthL4 protein. The resistance to the drug indicates that the mutated amino acid Glu56 is probably critical for the local ribosomal conformation and that its mutation induces conformational disturbances that are “transferred” to the entrance of the major exit tunnel, the place where the drug does bind.  相似文献   

16.
《FEBS letters》1987,218(2):215-221
23 S ribosomal ribonucleic acid gene from the extreme thermophile eubacterium Thermus thermophilus HB8 has been cloned in pBR322, and the nucleotide sequence of region D has been determined, which encompasses 873 nucleotides at the 3′-end of the RNA. We compare the primary and secondary structure of this region with the respective part of the 23 S rRNA from Escherichia coli and Bacillus stearothermophilus. A high level of structural conservation can be observed, throughout the RNA domain, albeit the usage of G/C basepairs is substantial even in comparison with another thermophilic eubacterium B. stearothermophilus. It is surprising that, in contrast to the usage of 3′U-G5′, the occurrence of 3′G-U5′ is comparable in E. coli as well as in B. stearothermophilus and T. thermophilus. Furthermore, it is most remarkable that the use of 3′A-U5′ and 3′U-A5′ is, compared to E. coli, only slightly reduced in B. stearothermophilus, but drastically decreased in T. thermophilus.  相似文献   

17.
In eukaryotes, in vivo formation of the two ribosomal subunits from four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (r-proteins) involves more than 150 nonribosomal proteins and around 100 small noncoding RNAs. It is temporally and spatially organized within different cellular compartments: the nucleolus, the nucleoplasm, and the cytoplasm. Here, we present a way to analyze how eukaryotic r-proteins of the small ribosomal subunit (SSU) assemble in vivo with rRNA. Our results show that key aspects of the assembly of eukaryotic r-proteins into distinct structural parts of the SSU are similar to the in vitro assembly pathway of their prokaryotic counterparts. We observe that the establishment of a stable assembly intermediate of the eukaryotic SSU body, but not of the SSU head, is closely linked to early rRNA processing events. The formation of assembly intermediates of the head controls efficient nuclear export of the SSU and cytoplasmic pre-rRNA maturation steps.  相似文献   

18.
Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.All ribosomes are composed of two subunits, both of which are built from RNA and protein (Figs. (Figs.11 and and2).2). Bacterial ribosomes, for example of Escherichia coli, contain a small subunit (SSU) composed of one 16S ribosomal RNA (rRNA) and 21 ribosomal proteins (r-proteins) (Figs. (Figs.1A1A and and1B)1B) and a large subunit (LSU) containing 5S and 23S rRNAs and 33 r-proteins (Fig. 2A). Crystal structures of prokaryotic ribosomal particles, namely, the Thermus thermophilus SSU (Schluenzen et al. 2000; Wimberly et al. 2000), Haloarcula marismortui and Deinococcus radiodurans LSU (Ban et al. 2000; Harms et al. 2001), and E. coli and T. thermophilus 70S ribosomes (Yusupov et al. 2001; Schuwirth et al. 2005; Selmer et al. 2006), reveal the complex architecture that derives from the network of interactions connecting the individual r-proteins with each other and with the rRNAs (Brodersen et al. 2002; Klein et al. 2004). The 16S rRNA can be divided into four domains, which together with the r-proteins constitute the structural landmarks of the SSU (Wimberly et al. 2000) (Fig. 1A): The 5′ and 3′ minor (h44) domains with proteins S4, S5, S12, S16, S17, and S20 constitute the body (and spur or foot) of the SSU; the 3′ major domain forms the head, which is protein rich, containing S2, S3, S7, S9, S10, S13, S14, and S19; whereas the central domain makes up the platform by interacting with proteins S1, S6, S8, S11, S15, and S18 (Fig. 1B). The rRNA of the LSU can be divided into seven domains (including the 5S rRNA as domain VII), which—in contrast to the SSU—are intricately interwoven with the r-proteins as well as each other (Ban et al. 2000; Brodersen et al. 2002) (Fig. 2A). Structural landmarks on the LSU include the central protuberance (CP) and the flexible L1 and L7/L12 stalks (Fig. 2A).Open in a separate windowFigure 1.The bacterial and eukaryotic small ribosomal subunit. (A,B) Interface (upper) and solvent (lower) views of the bacterial 30S subunit (Jenner et al. 2010a). (A) 16S rRNA domains and associated r-proteins colored distinctly: b, body (blue); h, head (red); pt, platform (green); and h44, helix 44 (yellow). (B) 16S rRNA colored gray and r-proteins colored distinctly and labeled. (CE) Interface and solvent views of the eukaryotic 40S subunit (Rabl et al. 2011), with (C) eukaryotic-specific r-proteins (red) and rRNA (pink) shown relative to conserved rRNA (gray) and r-proteins (blue), and with (D,E) 18S rRNA colored gray and r-proteins colored distinctly and labeled.Open in a separate windowFigure 2.The bacterial and eukaryotic large ribosomal subunit. (A) Interface (upper) and solvent (lower) views of the bacterial 50S subunit (Jenner et al. 2010b), with 23S rRNA domains and bacterial-specific (light blue) and conserved (blue) r-proteins colored distinctly: cp, central protuberance; L1, L1 stalk; and St, L7/L12 stalk (or P-stalk in archeaa/eukaryotes). (BE) Interface and solvent views of the eukaryotic 60S subunit (Klinge et al. 2011), with (B) eukaryotic-specific r-proteins (red) and rRNA (pink) shown relative to conserved rRNA (gray) and r-proteins (blue), (C) eukaryotic-specific expansion segments (ES) colored distinctly, and (D,E) 28S rRNA colored gray and r-proteins colored distinctly and labeled.In contrast to their bacterial counterparts, eukaryotic ribosomes are much larger and more complex, containing additional rRNA in the form of so-called expansion segments (ES) as well as many additional r-proteins and r-protein extensions (Figs. 1C–E and and2C–E).2C–E). Compared with the ∼4500 nucleotides of rRNA and 54 r-proteins of the bacterial 70S ribosome, eukaryotic 80S ribosomes contain >5500 nucleotides of rRNA (SSU, 18S rRNA; LSU, 5S, 5.8S, and 25S rRNA) and 80 (79 in yeast) r-proteins. The first structural models for the eukaryotic (yeast) ribosome were built using 15-Å cryo–electon microscopy (cryo-EM) maps fitted with structures of the bacterial SSU (Wimberly et al. 2000) and archaeal LSU (Ban et al. 2000), thus identifying the location of a total of 46 eukaryotic r-proteins with bacterial and/or archaeal homologs as well as many ES (Spahn et al. 2001a). Subsequent cryo-EM reconstructions led to the localization of additional eukaryotic r-proteins, RACK1 (Sengupta et al. 2004) and S19e (Taylor et al. 2009) on the SSU and L30e (Halic et al. 2005) on the LSU, as well as more complete models of the rRNA derived from cryo-EM maps of canine and fungal 80S ribosomes at ∼9 Å (Chandramouli et al. 2008; Taylor et al. 2009). Recent cryo-EM reconstructions of plant and yeast 80S translating ribosomes at 5.5–6.1 Å enabled the correct placement of an additional six and 10 r-proteins on the SSU and LSU, respectively, as well as the tracing of many eukaryotic-specific r-protein extensions (Armache et al. 2010a,b). The full assignment of the r-proteins in the yeast and fungal 80S ribosomes, however, only became possible with the improved resolution (3.0–3.9 Å) resulting from the crystal structures of the SSU and LSU from Tetrahymena thermophila (Klinge et al. 2011; Rabl et al. 2011) and the Saccharomyces cerevisiae 80S ribosome (Figs. (Figs.1D,E1D,E and and2D,E)2D,E) (Ben-Shem et al. 2011).  相似文献   

19.
All cultivated isolates of the bacterial order Thermotogales are either thermophiles or hyperthermophiles, but Thermotogales 16S rRNA gene sequences have been detected in many mesophilic anaerobic and microaerophilic environments, particularly within communities involved in the remediation of pollutants. Here we provide metagenomic evidence for the existence of Thermotogales lineages, which we informally call “mesotoga,” that are adapted to growth at lower temperatures. Two fosmid clones containing mesotoga DNA, originating from a low-temperature enrichment culture that degrades a polychlorinated biphenyl congener, were sequenced. Phylogenetic analysis clearly puts this bacterial lineage within the Thermotogales order, with the rRNA gene trees and 21 of 58 open reading frames strongly supporting this relationship. An analysis of protein sequence composition showed that mesotoga proteins are adapted to function at lower temperatures than are their identifiable homologs from thermophilic and hyperthermophilic members of the order Thermotogales, supporting the notion that this bacterium lives and grows optimally at lower temperatures. The phylogenetic analysis suggests that the mesotoga lineage from which our fosmids derive has used both the acquisition of genes from its neighbors and the modification of existing thermophilic sequences to adapt to a mesophilic lifestyle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号