首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Promiscuous inhibition of the human ether-à-go-go-related gene (hERG) potassium channel by drugs poses a major risk for life threatening arrhythmia and costly drug withdrawals. Current knowledge of this phenomenon is derived from a limited number of known drugs and tool compounds. However, in a diverse, naïve chemical library, it remains unclear which and to what degree chemical motifs or scaffolds might be enriched for hERG inhibition. Here we report electrophysiology measurements of hERG inhibition and computational analyses of >300,000 diverse small molecules. We identify chemical ‘communities’ with high hERG liability, containing both canonical scaffolds and structurally distinctive molecules. These data enable the development of more effective classifiers to computationally assess hERG risk. The resultant predictive models now accurately classify naïve compound libraries for tendency of hERG inhibition. Together these results provide a more complete reference map of characteristic chemical motifs for hERG liability and advance a systematic approach to rank chemical collections for cardiotoxicity risk.  相似文献   

2.
KCNH channels form an important family of voltage gated potassium channels. These channels include a N-terminal Per-Arnt-Sim (PAS) domain with unknown function. In other proteins PAS domains are implicated in cellular responses to environmental queues through small molecule binding or involvement in signaling cascades. To better understand their role we characterized the structural properties of several channel PAS domains. We determined high resolution structures of PAS domains from the mouse EAG (mEAG), drosophila ELK (dELK) and human ERG (hERG) channels and also of the hERG domain without the first nine amino acids. We analyzed these structures for features connected to ligand binding and signaling in other PAS domains. In particular, we have found cavities in the hERG and mEAG structures that share similarities with the ligand binding sites from other PAS domains. These cavities are lined by polar and apolar chemical groups and display potential flexibility in their volume. We have also found that the hydrophobic patch on the domain β-sheet is a conserved feature and appears to drive the formation of protein-protein contacts. In addition, the structures of the dELK domain and of the truncated hERG domain revealed the presence of N-terminal helices. These helices are equivalent to the helix described in the hERG NMR structures and are known to be important for channel function. Overall, these channel domains retain many of the PAS domain characteristics known to be important for cell signaling.  相似文献   

3.
8-Amino-imidazo[1,5-a]pyrazine-based Bruton’s tyrosine kinase (BTK) inhibitors, such as 6, exhibited potent inhibition of BTK but required improvements in both kinase and hERG selectivity (Liu et al., 2016; Gao et al., 2017). In an effort to maintain the inhibitory activity of these analogs and improve their selectivity profiles, we carried out SAR exploration of groups at the 3-position of pyrazine compound 6. This effort led to the discovery of the morpholine group as an optimized pharmacophore. Compounds 13, 23 and 38 displayed excellent BTK potencies, kinase and hERG selectivities, and pharmacokinetic profiles.  相似文献   

4.
5.
The human Ether-à-go-go-related gene (hERG)-encoded K+ current, IKr is essential for cardiac repolarization but is also a source of cardiotoxicity because unintended hERG inhibition by diverse pharmaceuticals can cause arrhythmias and sudden cardiac death. We hypothesized that a small molecule that diminishes IKr block by a known hERG antagonist would constitute a first step toward preventing hERG-related arrhythmias and facilitating drug discovery. Using a high-throughput assay, we screened a library of compounds for agents that increase the IC70 of dofetilide, a well characterized hERG blocker. One compound, VU0405601, with the desired activity was further characterized. In isolated, Langendorff-perfused rabbit hearts, optical mapping revealed that dofetilide-induced arrhythmias were reduced after pretreatment with VU0405601. Patch clamp analysis in stable hERG-HEK cells showed effects on current amplitude, inactivation, and deactivation. VU0405601 increased the IC50 of dofetilide from 38.7 to 76.3 nm. VU0405601 mitigates the effects of hERG blockers from the extracellular aspect primarily by reducing inactivation, whereas most clinically relevant hERG inhibitors act at an inner pore site. Structure-activity relationships surrounding VU0405601 identified a 3-pyridiyl and a naphthyridine ring system as key structural components important for preventing hERG inhibition by multiple inhibitors. These findings indicate that small molecules can be designed to reduce the sensitivity of hERG to inhibitors.  相似文献   

6.
7.
8.
Long QT syndrome, either inherited or acquired from drug treatments, can result in ventricular arrhythmia (torsade de pointes) and sudden death. Human ether-a-go-go-related gene (hERG) channel inhibition by drugs is now recognized as a common reason for the acquired form of long QT syndrome. It has been reported that more than 100 known drugs inhibit the activity of the hERG channel. Since 1997, several drugs have been withdrawn from the market due to the long QT syndrome caused by hERG inhibition. Food and Drug Administration regulations now require safety data on hERG channels for investigative new drug (IND) applications. The assessment of compound activity on the hERG channel has now become an important part of the safety evaluation in the process of drug discovery. During the past decade, several in vitro assay methods have been developed and significant resources have been used to characterize hERG channel activities. However, evaluation of compound activities on hERG have not been performed for large compound collections due to technical difficulty, lack of throughput, and/or lack of biological relevance to function. Here we report a modified form of the FluxOR thallium flux assay, capable of measuring hERG activity in a homogeneous 1536-well plate format. To validate the assay, we screened a 7-point dilution series of the LOPAC 1280 library collection and reported rank order potencies of ten common hERG inhibitors. A correlation was also observed for the hERG channel activities of 10 known hERG inhibitors determined in this thallium flux assay and in the patch clamp experiment. Our findings indicate that this thallium flux assay can be used as an alternative method to profile large-volume compound libraries for compound activity on the hERG channel.  相似文献   

9.
10.
11.
12.
13.
Human Ether á go-go Related Gene potassium channels form the rapid component of the delayed-rectifier (IKr) current in the heart. The N-terminal ‘eag’ domain, which is composed of a Per-Arnt-Sim (PAS) domain and a short PAS-cap region, is a critical regulator of hERG channel function. In previous studies, we showed that isolated eag (i-eag) domains rescued the dysfunction of long QT type-2 associated mutant hERG R56Q channels, by substituting for defective eag domains, when the channels were expressed in Xenopus oocytes or HEK 293 cells.Here, our goal was to determine whether the rescue of hERG R56Q channels by i-eag domains could be translated into the environment of cardiac myocytes. We expressed hERG R56Q channels in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and measured electrical properties of the cells with whole-cell patch-clamp recordings. We found that, like in non-myocyte cells, hERG R56Q had defective, fast closing (deactivation) kinetics when expressed in hiPSC-CMs. We report here that i-eag domains slowed the deactivation kinetics of hERG R56Q channels in hiPSC-CMs. hERG R56Q channels prolonged the AP of hiPSCs, and the AP was shortened by co-expression of i-eag domains and hERG R56Q channels. We measured robust Förster Resonance Energy Transfer (FRET) between i-eag domains tagged with Cyan fluorescent protein (CFP) and hERG R56Q channels tagged with Citrine fluorescent proteins (Citrine), indicating their close proximity at the cell membrane in live iPSC-CMs. Together, functional regulation and FRET spectroscopy measurements indicated that i-eag domains interacted directly with hERG R56Q channels in hiPSC-CMs. These results mean that the regulatory role of i-eag domains is conserved in the cellular environment of human cardiomyocytes, indicating that i-eag domains may be useful as a biological therapeutic.  相似文献   

14.
Solute carriers are eukaryotic membrane proteins that control the uptake and efflux of solutes, including essential cellular compounds, environmental toxins, and therapeutic drugs. Solute carriers can share similar structural features despite weak sequence similarities. Identification of sequence relationships among solute carriers is needed to enhance our ability to model individual carriers and to elucidate the molecular mechanisms of their substrate specificity and transport. Here, we describe a comprehensive comparison of solute carriers. We link the proteins using sensitive profile–profile alignments and two classification approaches, including similarity networks. The clusters are analyzed in view of substrate type, transport mode, organism conservation, and tissue specificity. Solute carrier families with similar substrates generally cluster together, despite exhibiting relatively weak sequence similarities. In contrast, some families cluster together with no apparent reason, revealing unexplored relationships. We demonstrate computationally and experimentally the functional overlap between representative members of these families. Finally, we identify four putative solute carriers in the human genome. The solute carriers include a biomedically important group of membrane proteins that is diverse in sequence and structure. The proposed classification of solute carriers, combined with experiment, reveals new relationships among the individual families and identifies new solute carriers. The classification scheme will inform future attempts directed at modeling the structures of the solute carriers, a prerequisite for describing the substrate specificities of the individual families.  相似文献   

15.
Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.  相似文献   

16.
17.
18.
PDEδ is a small protein that binds and controls the trafficking of RAS subfamily proteins. Its inhibition protects initiation of RAS signaling, and it is one of the common targets considered for oncological drug development. In this study, we used solved x-ray structures of inhibitor-bound PDEδ targets to investigate mechanisms of action of six independent all-atom MD simulations. An analysis of atomic simulations combined with the molecular mechanic-Poisson-Boltzmann solvent accessible surface area/generalized Born solvent accessible surface area calculations led to the identification of action mechanisms for a panel of novel PDEδ inhibitors. To the best of our knowledge, this study is one of the first in silico investigations on co-crystallized PDEδ protein. A detailed atomic-scale understanding of the molecular mechanism of PDEδ inhibition may assist in the design of novel PDEδ inhibitors. One of the most common side effects for diverse small molecules/kinase inhibitors is their off-target interactions with cardiac ion channels and human-ether-a-go-go channel specifically. Thus, all of the studied PDEδ inhibitors are also screened in silico at the central cavities of hERG1 potassium channels.  相似文献   

19.
Modifications to the basic side-chain of early lead structures of the indolyl quinolinone class of KDR kinase inhibitors resulted in improved pharmacokinetic and ancillary profiles. Specifically, compounds bearing 5-amido- and 5-sulphonamido-indolyl substituents exhibited lower plasma clearance and weaker binding affinity for the I(Kr) potassium channel hERG.  相似文献   

20.
PDEδ is a small protein that binds and controls the trafficking of RAS subfamily proteins. Its inhibition protects initiation of RAS signaling, and it is one of the common targets considered for oncological drug development. In this study, we used solved x-ray structures of inhibitor-bound PDEδ targets to investigate mechanisms of action of six independent all-atom MD simulations. An analysis of atomic simulations combined with the molecular mechanic-Poisson-Boltzmann solvent accessible surface area/generalized Born solvent accessible surface area calculations led to the identification of action mechanisms for a panel of novel PDEδ inhibitors. To the best of our knowledge, this study is one of the first in silico investigations on co-crystallized PDEδ protein. A detailed atomic-scale understanding of the molecular mechanism of PDEδ inhibition may assist in the design of novel PDEδ inhibitors. One of the most common side effects for diverse small molecules/kinase inhibitors is their off-target interactions with cardiac ion channels and human-ether-a-go-go channel specifically. Thus, all of the studied PDEδ inhibitors are also screened in silico at the central cavities of hERG1 potassium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号