首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling via the type 1 insulin-like growth factor receptor (IGF1R) confers resistance to EGF receptor (EGFR) inhibitors. It is plausible that reciprocal EGFR compensation could mediate resistance to IGF1R inhibition, prompting us to investigate effects of IGF1R depletion on EGFR signaling in breast cancer cells expressing relatively high (MDA-MB-468) or low (MCF7) EGFR. Transient IGF1R knockdown induced enhanced phosphorylation of the EGFR and its effectors JNK, ERKs and STAT5, but this did not prevent apoptosis induction and inhibition of clonogenic survival following IGF1R knockdown. We used IGF1R shRNA to induce chronic IGF1R depletion, and achieved stable gene silencing in MCF-7 cells; here, EGFR overexpression led to EGFR hyperphosphorylation, again without abrogating survival inhibition after IGF1R knockdown. In both cell lines, dual receptor knockdown prevented EGFR hyperphosphorylation, but induced no greater inhibition of clonogenic survival than IGF1R knockdown alone. These results suggest that the EGFR cannot compensate for IGF1R depletion, and are encouraging for the strategy of IGF1R targeting.  相似文献   

2.
Inhibition of epidermal growth factor receptor (EGFR) signaling sensitizes human malignant glioma cells to death ligand-induced apoptosis. However, tumor cells may compensate the loss of EGFR signaling by activation of the type 1 insulin-like growth factor receptor (IGF-1R). We here report that antagonism of the IGF-1R with the small-molecule inhibitor AG1024 in combination with inhibitors of the EGFR synergistically sensitizes human malignant glioma cells to CD95L-induced apoptosis. This cell death is p53-independent, but requires caspase 8 activity. The levels of the receptor, CD95, are not altered by the inhibitors alone or in combination. Analysis of the downstream signaling pathways reveals synergistic inhibition of ribosomal protein S6 phosphorylation by inhibitor co-treatment, suggesting an involvement of the mammalian target of rapamycin pathway. These findings suggest that adding inhibitors of IGF-1R may be a strategy to overcome escape from the anti-apoptotic effects of EGFR inhibition in malignant gliomas.  相似文献   

3.
The insulin-like growth factor-1 receptor (IGF-1R) and ErbB family of receptors are receptor tyrosine kinases that play important roles in cancer. Lack of response and resistance to therapies targeting ErbB receptors occur and are often associated with activation of the IGF-1R pathway. Combinations of agents that inhibit IGF-1R and ErbB receptors have been shown to synergistically block cancer cell proliferation and xenograft tumor growth. To determine the mechanism by which targeting both IGF-1R and ErbB receptors causes synergistic effects on cell growth and survival, we investigated the effects of combinations of selective IGF-1R and ErbB kinase inhibitors on proliferative and apoptotic signaling. We identified A431 squamous cell carcinoma cells as most sensitive to combinations of ErbB and IGF-1R inhibitors. The inhibitor combinations resulted in not only blockade of A431 cell proliferation, but also induced apoptosis, which was not seen with either agent alone. Upon examining phosphorylation states and expression levels of proteins in the IGF-1R and ErbB signaling pathways, we found a correlation between the ability of combinations to inhibit proliferation and to decrease levels of phosphorylated Akt and cyclin D1. In addition, the massive cell death induced by combined IGF-1R/ErbB inhibition was associated with Mcl-1 reduction and Bax activation. Thus, targeting both IGF-1R and ErbB receptors simultaneously results in cell cycle arrest and apoptosis through combined effects on Akt, cyclin D1, and Bax activation.  相似文献   

4.
Glioblastoma multiforme is a deadly cancer for which current treatment options are limited. The ability of glioblastoma tumor cells to infiltrate the surrounding brain parenchyma critically limits the effectiveness of current treatments. We investigated how microglia, the resident macrophages of the brain, stimulate glioblastoma cell invasion. We first examined the ability of normal microglia from C57Bl/6J mice to stimulate GL261 glioblastoma cell invasion in vitro. We found that microglia stimulate the invasion of GL261 glioblastoma cells by approximately eightfold in an in vitro invasion assay. Pharmacological inhibition of epidermal growth factor receptor (EGFR) strongly inhibited microglia-stimulated invasion. Furthermore, blockade of colony stimulating factor 1 receptor (CSF-1R) signaling using ribonucleic acid (RNA) interference or pharmacological inhibitors completely inhibited microglial enhancement of glioblastoma invasion. GL261 cells were found to constitutively secrete CSF-1, the levels of which were unaffected by epidermal growth factor (EGF) stimulation, EGFR inhibition or coculture with microglia. CSF-1 only stimulated microglia invasion, whereas EGF only stimulated glioblastoma cell migration, demonstrating a synergistic interaction between these two cell types. Finally, using PLX3397 (a CSF-1R inhibitor that can cross the blood-brain barrier) in live animals, we discovered that blockade of CSF-1R signaling in vivo reduced the number of tumor-associated microglia and glioblastoma invasion. These data indicate that glioblastoma and microglia interactions mediated by EGF and CSF-1 can enhance glioblastoma invasion and demonstrate the possibility of inhibiting glioblastoma invasion by targeting glioblastoma-associated microglia via inhibition of the CSF-1R.  相似文献   

5.
Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.  相似文献   

6.
The type 1 insulin-like growth factor receptor (IGF1R) is a promising anticancer treatment target, being frequently overexpressed by tumours, and mediating proliferation, motility and apoptosis protection. Design of specific kinase inhibitors is problematic because of homology between the IGF1R and insulin receptor. This obstacle can be circumvented using sequence-specific molecular agents including antisense, triplex and ribozymes. Recent studies indicate that profound sequence-specific IGF1R gene silencing can be induced by small interfering RNAs that mediate RNA interference in mammalian cells. IGF1R downregulation blocks tumour growth and metastasis, and enhances sensitivity to cytotoxic drugs and irradiation. In murine melanoma cells, radiosensitisation is associated with impaired activation of Atm, which is required for initiation of cell cycle checkpoints and DNA repair pathways after double-strand DNA breaks. Furthermore, tumour cells killed in vivo following IGF1R downregulation can provoke an immune response, protecting against tumour rechallenge. After years of studying the role of the IGF system in tumour biology, novel agents for IGF1R targeting will soon be available for clinical testing. This review summarises the development of molecular agents, and considers factors that will influence clinical activity, including the requirement of established tumours for IGF signalling, and the efficacy and toxicity of IGF1R inhibitors.  相似文献   

7.
Both the epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF1R) require homo- and hetero-dimerisation with their own family members to acquire full function. We recently showed that IGF1R gene silencing led to EGFR hyper-phosphorylation in human breast cancer cells, and hypothesised that this crosstalk might be associated with direct IGF1R:EGFR interaction. Indeed we could detect reciprocal co-precipitation between the IGF1R and EGFR when overexpressed in SKUT-1 cells, and between endogenous IGF1R and EGFR in MDA-MB-468 breast carcinoma cells, two squamous cancer cell lines, and clinical samples of breast cancer. Interaction was abolished by knockdown of either receptor, and we noted that EGFR knockdown also suppressed IGF1R protein levels. Further investigation revealed that EGFR depletion induced enhancement of IGF1R ubiquitylation and degradation. These results indicate novel evidence of crosstalk between two key cancer treatment targets, capable of modifying the stability of IGF1R protein.  相似文献   

8.
Therapies directed against receptor tyrosine kinases are effective in many cancer subtypes, including lung and breast cancer. We used a phosphoproteomic platform to identify active receptor tyrosine kinases that might represent therapeutic targets in a panel of 25 melanoma cell strains. We detected activated receptors including TYRO3, AXL, MERTK, EPHB2, MET, IGF1R, EGFR, KIT, HER3, and HER4. Statistical analysis of receptor tyrosine kinase activation as well as ligand and receptor expression indicates that some receptors, such as FGFR3, may be activated via autocrine circuits. Short hairpin RNA knockdown targeting three of the active kinases identified in the screen, AXL, HER3, and IGF1R, inhibited the proliferation of melanoma cells and knockdown of active AXL also reduced melanoma cell migration. The changes in cellular phenotype observed on AXL knockdown seem to be modulated via the STAT3 signaling pathway, whereas the IGF1R-dependent alterations seem to be regulated by the AKT signaling pathway. Ultimately, this study identifies several novel targets for therapeutic intervention in melanoma.  相似文献   

9.
Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R) antibody figitumumab in non-small cell lung cancer (NSCLC) patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR) in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R) and IR47-9 (IR), and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.  相似文献   

10.
Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as “gefitinib-resistant persisters” (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1–all genes involved in stemness–were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.  相似文献   

11.
Epidermal growth factor receptor (EGFR) and c-MET receptors are expressed on many non-small cell lung cancer (NSCLC) cells. Current single agent therapeutic targeting of a mutant EGFR has a high efficacy in the clinic, but is not curative. Here, we investigated the combination of targeting EGFR and c-MET pathways in NSCLC cells resistant to receptor tyrosine kinase inhibitors (TKIs), using RNA interference and inhibition by TKIs. Different NSCLC cell lines with various genomic characteristics (H358, H1650 and H1975) were transfected with EGFR-specific-siRNA, T790M-specific-siRNA, c-MET siRNA or the combination. Subsequently EGFR TKIs (gefitinib, erlotinib or afatinib) or monoclonal antibody cetuximab were combined respectively with the c-MET-specific TKI su11274 in NSCLC cell lines. The cell proliferation, viability, caspase−3/7 activity and apoptotic morphology were monitored by spectrophotometry, fluorimetry and fluorescence microscopy. The combined effect of EGFR TKIs, or cetuximab and su11274, was evaluated using a combination index. The results showed that the cell lines that were relatively resistant to EGFR TKIs, especially the H1975 cell line containing the resistance T790M mutation, were found to be more sensitive to EGFR-specific-siRNA. The combination of EGFR siRNA plus c-MET siRNA enhanced cell growth inhibition, apoptosis induction and inhibition of downstream signaling in EGFR TKI resistant H358, H1650 and H1975 cells, despite the absence of activity of the c-MET siRNA alone. EGFR TKIs or cetuximab plus su11274 were also consistently superior to either agent alone. The strongest biological effect was observed when afatinib, an irreversible pan-HER blocker was combined with su11274, which achieved a synergistic effect in the T790M mutant H1975 cells. In a conclusion, our findings offer preclinical proof of principle for combined inhibition as a promising treatment strategy for NSCLC, especially for patients in whom current EGFR-targeted treatments fail due to the presence of the T790M-EGFR-mutation or high c-MET expression.  相似文献   

12.
Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.  相似文献   

13.
Insulin-like growth factor (IGF) signaling pathway is an important regulatory mechanism of tumorigenesis and drug resistance in many cancers. The present study explored the potential synergistic effects between IGF receptor (IGFR) inhibition and other molecular targeted agents (MTA) in HCC cells. HCC cell lines (Hep3B, PLC5, and SK-Hep1) and HUVECs were tested. The MTA tested included sorafenib, sunitinib, and the IGFR kinase inhibitor NVP-AEW541. The potential synergistic antitumor effects were tested by median dose effect analysis and apoptosis assay in vitro and by xenograft models in vivo. The activity and functional significance of pertinent signaling pathways and expression of apoptosis-related proteins were measured by RNA interference and Western blotting. We found that IGF can activate IGFR and downstream AKT signaling activities in all the HCC cells tested, but the growth-stimulating effect of IGF was most prominent in Hep3B cells. NVP-AEW541 can abrogate IGF-induced activation of IGFR and AKT signaling in HCC cells. IGF can increase the resistance of HCC cells to sunitinib. The apoptosis-inducing effects of sunitinib, but not sorafenib, were enhanced when IGFR signaling activity was inhibited by NVP-AEW541 or IGFR knockdown. Chk2 kinase activation was found contributory to the synergistic anti-tumor effects between sunitinib and IGFR inhibition. Our data indicate that the apoptosis-potentiating effects of IGFR inhibition for HCC may be drug-specific. Combination therapy of IGFR inhibitors with other MTA may improve the therapeutic efficacy in HCC.  相似文献   

14.
Recent evidence suggests that signaling pathways towards cell proliferation and cell death are much more interconnected than previously thought. Whereas not only death receptors such as CD95 (Fas, APO-1) can couple to both, cell death and proliferation, also growth factor receptors such as the epidermal growth factor receptor (EGFR) are involved in these opposing kinds of cell fate. EGFR is briefly discussed as a growth factor receptor involved in liver cell proliferation during liver regeneration. Then the role of EGFR in activating CD95 death receptor in liver parenchymal cells (PC) and hepatic stellate cells (HSC), which represent a liver stem/progenitor cell compartment, is described summarizing different ways of CD95- and EGFR-dependent signaling in the liver. Here, depending on the hepatic cell type (PC vs. HSC) and the respective signaling context (sustained vs. transient JNK activation) CD95-/EGFR-mediated signaling ends up in either liver cell apoptosis or cell proliferation.  相似文献   

15.
The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.  相似文献   

16.
Receptor endocytosis is critical for cell signaling. IGF1R mediates an autocrine loop that is de-regulated in Ewing Sarcoma (ES) cells. Here we study the impact of IGF1R internalization, mediated by clathrin and caveolin-1 (CAV1), in ES signaling. We used clathrin and CAV1-siRNA to interfere in clathrin- and caveolin-dependent endocytosis. Chlorpromazine (CPMZ) and methyl-beta-cyclo-dextrin (MCD) were also used in order to inhibit clathrin- and caveolin-dependent endocytosis, respectively. We analyzed IGF1R internalization and co-localization with clathrin and CAV1 upon ligand binding, as well as the status of the IGF1R pathway, cellular proliferation, and the apoptosis of interfered and inhibited ES cells. We performed a high-throughput tyrosine kinase phosphorylation assay to analyze the effects of combining the IGF1R tyrosine kinase inhibitor AEW541 (AEW) with CPMZ or MCD on the intracellular phospho-proteome. We observed that IGF1R is internalized upon ligand binding in ES cells and that this process is dependent on clathrin or CAV1. The blockage of receptor internalization inhibited AKT and MAPK phosphorylation, reducing the proliferative rate of ES cells and increasing the levels of apoptosis. Combination of AEW with CPMZ or MCD largely enhanced these effects. CAV1 and clathrin endocytosis controls IGF1R internalization and signaling and has a profound impact on ES IGF1R-promoted survival signaling. We propose the combination of tyrosine-kinase inhibitors with endocytosis inhibitors as a new therapeutic approach to achieve a stronger degree of receptor inhibition in this, or other neoplasms dependent on IGF1R signaling.  相似文献   

17.
Epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitors (TKIs), including gefitinib, are the first‐line treatment of choice for nonsmall cell lung cancer patients who harbor activating EGFR mutations, however, acquired resistance to EGFR‐TKIs is inevitable. The main objective of this study was to identify informative protein signatures of extracellular vesicles (EV) derived from gefitinib‐resistant nonsmall cell lung cancer cells using proteomics analysis. Nano‐LC–MS/MS analysis identified with high confidence (false discovery rate < 0.05, fold change ≥2) 664 EV proteins enriched in PC9R cells, which are resistant to gefitinib due to EGFR T790M mutation. Computational analyses suggested components of several signal transduction mechanisms including the AKT (also PKB, protein kinase B)/mTOR (mechanistic target of rapamycin) pathway are overrepresented in EV from PC9R cells. Treatment of recipient cells with EV harvested from PC9R cells increased phosphorylation of signaling molecules, and enhanced proliferation, invasion, and drug resistance to gefitinib‐induced apoptosis. Dose‐ and time‐dependent pharmaceutical inhibition of AKT/mTOR pathway overcame drug resistance of PC9R cells and those of H1975 exhibiting EGFR T790M mutation. Our findings provide new insight into an oncogenic EV protein signature regulating tumor microenvironment, and will aid in the development of novel diagnostic strategies for prediction and assessment of gefitinib resistance.  相似文献   

18.

Background

Tyrosin kinase inhibitors (TKIs) and monoclonal antibodies aimed to target epidermal growth factor receptor (EGFR) have shown limited effect as monotherapies and drug resistance is a major limitation for therapeutic success. Adjuvant therapies to EGFR targeting therapeutics are therefore of high clinical relevance.

Methods

Three EGFR targeting drugs, Cetuximab, Erlotinib and Tyrphostin AG1478 were used in combination with photodynamic therapy (PDT) in two EGFR positive cell lines, A-431 epidermoid skin carcinoma and WiDr colorectal adenocarcinoma cells. The amphiphilic meso-tetraphenylporphine with 2 sulphonate groups on adjacent phenyl rings (TPPS2a) was utilized as a photosensitizer for PDT. The cytotoxic outcome of the combined treatments was evaluated by cell counting and MTT. Cellular signalling was explored by Western blotting.

Results

PDT as neoadjuvant to Tyrphostin in A-431 cells as well as to Tyrphostin or Erlotinib in WiDr cells revealed synergistic cytotoxicity. In contrast, Erlotinib or Cetuximab combined with neoadjuvant PDT induced an antagonistic effect on cell survival of A-431 cells. Neoadjuvant PDT and EGFR targeting therapies induced a synergistic inhibition of ERK as well as synergistic cytotoxicity only when the EGFR targeting monotherapies caused a prolonged ERK inhibition. There were no correlation between EGFR inhibition by the EGFR targeting monotherapies or the combined therapies and the cytotoxic outcome combination-therapies.

Conclusions

The results suggest that sustained ERK inhibition by EGFR targeting monotherapies is a predictive factor for synergistic cytotoxicity when combined with neoadjuvant PDT.

General significance

The present study provides a rationale for selecting anticancer drugs which may benefit from PDT as adjuvant therapy.  相似文献   

19.
Bromocriptine, acting through the dopamine D2 receptor, provides robust protection against apoptosis induced by oxidative stress in PC12-D2R and immortalized nigral dopamine cells. We now report the characterization of the D2 receptor signaling pathways mediating the cytoprotection. Bromocriptine caused protein kinase B (Akt) activation in PC12-D2R cells and the inhibition of either phosphoinositide (PI) 3-kinase, epidermal growth factor receptor (EGFR), or c-Src eliminated the Akt activation and the cytoprotective effects of bromocriptine against oxidative stress. Co-immunoprecipitation studies showed that the D2 receptor forms a complex with the EGFR and c-Src that was augmented by bromocriptine, suggesting a cross-talk between these proteins in mediating the activation of Akt. EGFR repression by inhibitor or by RNA interference eliminated the activation of Akt by bromocriptine. D2 receptor stimulation by bromocriptine induced c-Src tyrosine 418 phosphorylation and EGFR phosphorylation specifically at tyrosine 845, a known substrate of Src kinase. Furthermore, Src tyrosine kinase inhibitor or dominant negative Src interfered with Akt translocation and phosphorylation. Thus, the predominant signaling cascade mediating cytoprotection by the D2 receptor involves c-Src/EGFR transactivation by D2 receptor, activating PI 3-kinase and Akt. We also found that the agonist pramipexole failed to stimulate activation of Akt in PC12-D2R cells, providing an explanation for our previous observations that, despite efficiently activating G-protein signaling, this agonist had little cytoprotective activity in this experimental system. These results support the hypothesis that specific dopamine agonists stabilize distinct conformations of the D2 receptor that differ in their coupling to G-proteins and to a cytoprotective c-Src/EGFR-mediated PI-3 kinase/Akt pathway.  相似文献   

20.
Overexpression of type 1 insulin-like growth factor receptor (IGF1R) contributes to the progression and metastasis of liver cancer, implying that IGF1R gene is a suitable target of RNA interference (RNAi) for liver cancer therapy. To investigate the possible regulation of IGF1R by P53, we examined the level of IGF1R expression in liver cancer cell lines in response to adriamycin. Levels of IGF1R mRNA and protein in cell lines with wild-type P53 decreased dramatically after P53 induction, but no such reduction of IGF1R was observed in cell lines with mutated P53. Inhibition of wild-type P53 in HEPG2 cells by small interfering RNA (siRNA) significantly upregulated the expression of IGF1R. IGF1R inhibition by siRNA in Huh7 cells with mutated P53 significantly depressed cell proliferation. To investigate the sensitivity of cancer cells to adriamycin after inhibition of IGF1R, we depressed IGF1R expression using siRNA, and then added adriamycin at an IC50 dose. After a further 48 h incubation with adriamycin, proliferation was significantly depressed in the cells treated with siRNA targeting IGF1R, in comparison with siRNA targeting scramble. Furthermore, both TUNEL and pro-caspase-3 expression assay showed a significant increase in apoptosis after combined treatment with adriamycin and siRNA targeting IGF1R. Our results demonstrate that IGF1R is downregulated by P53, and that siRNA targeting of IGF1R increases liver cancer cells sensitivity to adriamycin and promotes apoptosis. siRNA targeting of IGF1R could be potentially useful for increasing sensitivity to anti-cancer drugs, especially in drug-resistant cells with mutated P53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号