首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
eFGF regulates Xbra expression during Xenopus gastrulation.   总被引:8,自引:0,他引:8       下载免费PDF全文
H V Isaacs  M E Pownall    J M Slack 《The EMBO journal》1994,13(19):4469-4481
We show that, in addition to a role in mesoderm induction during blastula stages, FGF signalling plays an important role in maintaining the properties of the mesoderm in the gastrula of Xenopus laevis. eFGF is a maternally expressed secreted Xenopus FGF with potent mesoderm-inducing activity. However, it is most highly expressed in the mesoderm during gastrulation, suggesting a role after the period of mesoderm induction. eFGF is inhibited by the dominant negative FGF receptor. Embryos overexpressing the dominant negative receptor show a change of behaviour of the dorsal mesoderm such that it moves around the blastopore lip instead of elongating in an antero-posterior direction. In such embryos there is a reduction in Xbra expression during gastrulation. We show that during blastula stages eFGF and Xbra are able to activate the expression of each other, suggesting that they are components of an autocatalytic regulatory loop. Moreover, we show that Xbra expression in isolated gastrula mesoderm cells is maintained by eFGF, suggesting that eFGF continues to regulate the expression of Xbra in the blastopore region. In addition, overexpression of eFGF after the mid-blastula transition results in the up-regulation of Xbra expression during gastrula stages and causes suppression of the head and enlargement of the proctodeum, which is the converse of the posterior reductions of the FGF dominant negative receptor phenotype. These data suggest an important role for eFGF in regulating the expression of Xbra and for the eFGF-Xbra regulatory pathway in the control of mesodermal cell behaviour during gastrula stages.  相似文献   

3.
4.
In mouse, lefty genes play critical roles in the left-right (L-R) axis determination pathway. Here, we characterize the Xenopus lefty-related factor antivin (Xatv). Xatv expression is first observed in the marginal zone early during gastrulation, later becoming restricted to axial tissues. During tailbud stages, axial expression resolves to the neural tube floorplate, hypochord, and (transiently) the notochord anlage, and is joined by dynamic expression in the left lateral plate mesoderm (LPM) and left dorsal endoderm. An emerging paradigm in embryonic patterning is that secreted antagonists regulate the activity of intercellular signaling factors, thereby modulating cell fate specification. Xatv expression is rapidly induced by dorsoanterior-type mesoderm inducers such as activin or Xnr2. Xatv is not an inducer itself, but antagonizes both Xnr2 and activin. Together with its expression pattern, this suggests that Xatv functions during gastrulation in a negative feedback loop with Xnrs to affect the amount and/or character of mesoderm induced. Our data also provide insights into the way that lefty/nodal signals interact in the initiation of differential L-R morphogenesis. Right-sided misexpression of Xnr1 (endogenously expressed in the left LPM) induces bilateral Xatv expression. Left-sided Xatv overexpression suppresses Xnr1/XPitx2 expression in the left LPM, and leads to severely disturbed visceral asymmetry, suggesting that active 'left' signals are critical for L-R axis determination in frog embryos. We propose that the induction of lefty/Xatv in the left LPM by nodal/Xnr1 provides an efficient self-regulating mechanism to downregulate nodal/Xnr1 expression and ensure a transient 'left' signal within the embryo.  相似文献   

5.
Mesoderm formation in the amphibian embryo occurs through an inductive interaction in which cells of the vegetal hemisphere of the embryo act on overlying equatorial cells. The first candidate mesoderm-inducing factor to be identified was activin, a member of the transforming growth factor type beta family, and it is now clear that members of this family are indeed involved in mesoderm and endoderm formation. In particular, Derrière and five nodal-related genes are all considered to be strong candidates for endogenous mesoderm-inducing agents. Here, we show that activin, the function of which in mesoderm induction has hitherto been unclear, also plays a role in mesoderm formation. Inhibition of activin function using antisense morpholino oligonucleotides interferes with mesoderm formation in a concentration-dependent manner and also changes the expression levels of other inducing agents such as Xnr2 and Derrière. This work reinstates activin as a key player in mesodermal patterning. It also emphasises the importance of checking for polymorphisms in the 5' untranslated region of the gene of interest when carrying out antisense morpholino experiments in Xenopus laevis.  相似文献   

6.
7.
The isolated upper marginal zone from the initial stage ofCynops gastrulation is not yet determined to form the dorsal axis mesoderm: notochord and muscle. In this experiment, we will indicate where the dorsal mesoderm-inducing activity is localized in the very early gastrula, and what is an important event for specification of the dorsal axis mesoderm during gastrulation. Recombination experiments showed that dorsal mesoderm-inducing activity was localized definitively in the endodermal epithelium (EE) of the lower marginal zone, with a dorso-ventral gradient; and the EE itself differentiated into endodermal tissues, mainly pharyngeal endoderm. Nevertheless, when dorsal EE alone was transplanted into the ventral region, a secondary axis with dorsal mesoderm was barely formed. However, when dorsal EE was transplanted with the bottle cells which by themselves were incapable of mesoderm induction, a second axis with well-developed dorsal mesoderm was observed. When the animal half with the lower marginal zone was rotated 180° and recombined with the vegetal half, most of the rotated embryos formed only one dorsal axis at the primary blastopore side. The present results suggest that there are at least two essential processes in dorsal axis formation: mesoderm induction of the upper marginal zone by endodermal epithelium of the lower marginal zone, and dorsalization of the upper dorsal marginal zone evoked during involution.  相似文献   

8.
9.
FGF signaling has been implicated in germ layer formation and axial determination. An antibody specific for the activated form of mitogen-activated protein kinase (MAPK) was used to monitor FGF signaling in vivo during early Xenopus development. Activation of MAPK in young embryos is abolished by injection of a dominant negative FGF receptor (XFD) RNA, suggesting that MAPK is activated primarily by FGF in this context. A transition from cytoplasmic to nuclear localization of activated MAPK occurs in morula/blastula stage embryo animal and marginal zones coinciding with the proposed onset of mesodermal competence. Activated MAPK delineates the region of the dorsal marginal zone before blastopore formation and persists in this region during gastrulation, indicating an early role for FGF signaling in dorsal mesoderm. Activated MAPK was also found in posterior neural tissue from late gastrulation onward. Inhibition of FGF signaling does not block posterior neural gene expression (HoxB9) or activation of MAPK; however, inhibition of FGF signaling does cause a statistically significant decrease in the level of activated MAPK. These results point toward the involvement of other receptor tyrosine kinase signaling pathways in posterior neural patterning.  相似文献   

10.
11.
In Xenopus, the prospective endoderm and mesoderm are localized to discrete, adjacent domains at the beginning of gastrulation, and this is made evident by the expression of Sox17 in vegetal blastomeres and Brachyury (Xbra) in marginal blastomeres. Here, we examine the regulation of Sox17alpha expression and the role of Sox17alpha in establishing the vegetal endodermal gene expression domain. Injection of specific inhibitors of VegT or Nodal resulted in a loss of Sox17alpha expression in the gastrula. However, the onset of Sox17alpha expression at the midblastula transition was dependent on VegT, but not on Nodal function, indicating that Sox17alpha expression is initiated by VegT and then maintained by Nodal signals. Consistent with these results, VegT, but not Xenopus Nodal-related-1 (Xnr1), can activate Sox17alpha expression at the midblastula stage in animal explants. In addition, VegT activates Sox17alpha in the presence of cycloheximide or a Nodal antagonist, suggesting that Sox17alpha is an immediate-early target of VegT in vegetal blastomeres. Given that Nodal signals are necessary and sufficient for both mesodermal and endodermal gene expression, we propose that VegT activation of Sox17alpha at the midblastula transition prevents mesodermal gene expression in response to Nodal signals, thus establishing the vegetal endodermal gene expression domain. Supporting this idea, Sox17alpha misexpression in the marginal zone inhibits the expression of multiple mesodermal genes. Furthermore, in animal explants, Sox17alpha prevents the induction of Xbra and MyoD, but not Sox17beta or Mixer, in response to Xnr1. Therefore, VegT activation of Sox17alpha plays an important role in establishing a region of endoderm-specific gene expression in vegetal blastomeres.  相似文献   

12.
During Xenopus gastrulation, mesendodermal cells are internalized and display different movements. Head mesoderm migrates along the blastocoel roof, while trunk mesoderm undergoes convergent extension (C&E). Different signals are implicated in these processes. Our previous studies reveal that signals through ErbB receptor tyrosine kinases modulate Xenopus gastrulation, but the mechanisms employed are not understood. Here we report that ErbB signals control both C&E and head mesoderm migration. Inhibition of ErbB pathway blocks elongation of dorsal marginal zone explants and activin-treated animal caps without removing mesodermal gene expression. Bipolar cell shape and cell mixing in the dorsal region are impaired. Inhibition of ErbB signaling also interferes with migration of prechordal mesoderm on fibronectin. Cell-cell and cell-matrix interaction and cell spreading are reduced when ErbB signaling is blocked. Using antisense morpholino oligonucleotides, we show that ErbB4 is involved in Xenopus gastrulation morphogenesis, and it partially regulates cell movements through modulation of cell adhesion and membrane protrusions. Our results reveal for the first time that vertebrate ErbB signaling modulates gastrulation movements, thus providing a novel pathway, in addition to non-canonical Wnt and FGF signals, that controls gastrulation. We further demonstrate that regulation of cell adhesive properties and cell morphology may underlie the functions of ErbBs in gastrulation.  相似文献   

13.
BACKGROUND: Mesoderm migration in the Drosophila gastrula depends on the fibroblast growth factor (FGF) receptor Heartless (Htl). During gastrulation Htl is required for adhesive interactions of the mesoderm with the ectoderm and for the generation of protrusive activity of the mesoderm cells during migration. After gastrulation Htl is essential for the differentiation of dorsal mesodermal derivatives. It is not known how Htl is activated, because its ligand has not yet been identified. RESULTS: We performed a genome-wide genetic screen for early zygotic genes and identified seven genomic regions that are required for normal migration of the mesoderm cells during gastrulation. One of these genomic intervals produces upon its deletion a phenocopy of the htl cell migration phenotype. Here we present the genetic and molecular mapping of this genomic region. We identified two genes, FGF8-like1 and FGF8-like2, that encode novel FGF homologs and were only partially annotated in the Drosophila genome. We show that FGF8-like1 and FGF8-like2 are expressed in the neuroectoderm during gastrulation and present evidence that both act in concert to direct cell shape changes during mesodermal cell migration and are required for the activation of the Htl signaling cascade during gastrulation. CONCLUSIONS: We conclude that FGF8-like1 and FGF8-like2 encode two novel Drosophila FGF homologs, which are required for mesodermal cell migration during gastrulation. Our results suggest that FGF8-like1 and FGF8-like2 represent ligands of the Htl FGF receptor.  相似文献   

14.
15.
In a screening for activin-responsive genes, we isolated a Xenopus lefty/antivin-related gene, called Xantivin (Xatv). In the animal cap assay, the expression of Xatv was induced by activin signaling, and in the embryo, by nodal-related genes. Overexpression of Xatv in the marginal zone caused suppression of mesoderm formation and gastrulation defects, and inhibited the secondary axis formation induced by Xnr1 and Xactivin, suggesting that Xatv acted as a feedback inhibitor of activin signaling. However, in the animal cap, Xatv failed to antagonize Xnr1 and Xactivin. This result suggested that Xatv has different responses in the marginal zone and in the animal region, and antagonizes to a higher degree activin signaling in the marginal zone.  相似文献   

16.
17.
18.
Gastrulation in vertebrates is a highly dynamic process driven by convergent extension movements of internal mesodermal cells, under the regulatory activity of the Spemann-Mangold or gastrula organizer. In a large-scale screen for genes expressed in the organizer, we have isolated a novel gene, termed Xmc, an acronym for Xenopus marginal coil. Xmc encodes a protein containing two widely spaced evolutionarily non-conserved coiled coils. Xmc protein is found in vesicular aggregates in the cytoplasm and associated with the inner plasma membrane. We show that Xmc is expressed in a dynamic fashion around the blastoporal circumference, in mesodermal cells undergoing morphogenetic movements, in a pattern similar to FGF target genes. Likewise, Xmc expression can be induced by ectopic XeFGF signaling and the early mesodermal expression is dependent on FGF receptor-mediated signaling. Morpholino-mediated translational 'knock-down' of Xmc results in embryos that display a reduced elongation of the antero-posterior axis and in a pronounced inhibition of morphogenetic movements in embryos and dorsal marginal zone explants. Xmc loss-of-function does not interfere with mesoderm induction or maintenance per se. Our results suggest that Xmc is a novel FGF target gene that is required for morphogenetic movements during gastrulation in Xenopus.  相似文献   

19.
20.
Fibroblast growth factor (FGF) signaling has been shown to play critical roles in vertebrate segmentation and elongation of the embryonic axis. Neither the exact roles of FGF signaling, nor the identity of the FGF ligands involved in these processes, has been conclusively determined. Fgf8 is required for cell migration away from the primitive streak when gastrulation initiates, but previous studies have shown that drastically reducing the level of FGF8 later in gastrulation has no apparent effect on somitogenesis or elongation of the embryo. In this study, we demonstrate that loss of both Fgf8 and Fgf4 expression during late gastrulation resulted in a dramatic skeletal phenotype. Thoracic vertebrae and ribs had abnormal morphology, lumbar and sacral vertebrae were malformed or completely absent, and no tail vertebrae were present. The expression of Wnt3a in the tail and the amount of nascent mesoderm expressing Brachyury were both severely reduced. Expression of genes in the NOTCH signaling pathway involved in segmentation was significantly affected, and somite formation ceased after the production of about 15-20 somites. Defects seen in the mutants appear to result from a failure to produce sufficient paraxial mesoderm, rather than a failure of mesoderm precursors to migrate away from the primitive streak. Although the epiblast prematurely decreases in size, we did not detect evidence of a change in the proliferation rate of cells in the tail region or excessive apoptosis of epiblast or mesoderm cells. We propose that FGF4 and FGF8 are required to maintain a population of progenitor cells in the epiblast that generates mesoderm and contributes to the stem cell population that is incorporated in the tailbud and required for axial elongation of the mouse embryo after gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号