首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:应用RNA干扰(RNAi)技术调节大鼠c-jun基因在Cos-7细胞中的表达.方法:分别构建大鼠c-jun基因的RNA干扰载体和真核表达GFP(绿色荧光蛋白)载体,将两者共转染Cos-7细胞,镜下观察大鼠C-Jun-GFP融合蛋白的表达,应用Western blot方法检测抑制效率.结果:酶切和测序结果表明,大鼠c-jun基因的RNA干扰载体和真核表达GFP载体构建成功,镜下及Western blot共转染结果均显示随着RNA干扰载体浓度的增加C-Jun-GFP融合蛋白表达量逐渐减少.结论:在Cos-7细胞中应用RNAi技术成功调节大鼠c-jun基因的表达.  相似文献   

2.
3.
4.
5.
本研究构建FMDV WFL株ORF(open reading frame)基因真核表达质粒pEGFP-C1-A3I3,并进行了表达研究和共转染研究。结果发现,该质粒可以在BHK-21细胞中表达。将其与体外转录获得的FMDV RNA共转染BHK-21细胞后,用夹心ELISA、RT-PCR法以及电镜观察证明共转染后的细胞培养液中有病毒粒子,且病毒量高于单独转染RNA所得病毒量。证明用FMDV基因组真核表达质粒与其基因组体外转录RNA共转染敏感细胞可提高拯救病毒的数量。  相似文献   

6.
Our introduction of the molecular correlation concept and the key enzyme concept and the use of biologically meaningful tumor models and control systems resulted in the discovery of an ordered pattern of enzymic and metabolic imbalance and the elucidation of the linkage with transformation and progression. We showed that the biochemical and enzymic pattern of alterations was the result of a reprogramming of gene expression that was both quantitative and qualitative and was characteristic to neoplasia, since no similar pattern of imbalance was observed in any of the control normal, regenerating, or differentiating tissues. Important aspects of gene logic were identified. These include demonstration of operation of reciprocal control of activities of opposing key enzymes and antagonistic pathways of synthesis and catabolism in pyrimidine, purine, ornithine, and carbohydrate metabolism and recently in signal transduction. The extent of increase in the activities of key enzymes of pyrimidine and purine biosynthesis related to the absolute activity of the enzymes in resting liver. The qualitative alterations in gene expression included the isozyme shift of key regulatory enzymes. We identified a segment of gene expression that is essential for neoplasia. We pointed out the selective advantages that reprogramming of gene expression confers to cancer cells. Understanding these alterations in the enzymology and biochemistry of cancer cells made it possible to identify potentially sensitive targets for anticancer chemotherapy. In recent clinical studies we targeted the increased IMP dehydrogenase activity in leukemic blast cells by an inhibitor drug, tiazofurin, and achieved 77% responses, including complete remissions.  相似文献   

7.
《Cell reports》2019,26(13):3752-3761.e5
  1. Download : Download high-res image (172KB)
  2. Download : Download full-size image
  相似文献   

8.
The C-terminal domain (CTD) of the largest subunit in DNA-dependent RNA polymerase II (RNAP II) is essential for mRNA synthesis and processing, through coordination of an astounding array of protein-protein interactions. Not surprisingly, CTD mutations can have complex, pleiotropic impacts on phenotype. For example, insertions of five alanine residues between CTD diheptads in yeast, which alter the CTD''s overall tandem structure and physically separate core functional units, dramatically reduce growth rate and result in abnormally large cells that accumulate increased DNA content over time. Patterns by which specific CTD-protein interactions are disrupted by changes in CTD structure, as well as how downstream metabolic pathways are impacted, are difficult to target for direct experimental analyses. In an effort to connect an altered CTD to complex but quantifiable phenotypic changes, we applied network analyses of genes that are differentially expressed in our five alanine CTD mutant, combined with established genetic interactions from the Saccharomyces cerevisiae Genome Database (SGD). We were able to identify candidate genetic pathways, and several key genes, that could explain how this change in CTD structure leads to the specific phenotypic changes observed. These hypothetical networks identify links between CTD-associated proteins and mitotic function, control of cell cycle checkpoint mechanisms, and expression of cell wall and membrane components. Such results can help to direct future genetic and biochemical investigations that tie together the complex impacts of the CTD on global cellular metabolism.  相似文献   

9.
10.
11.
shRNA表达载体构建方法的优化   总被引:2,自引:0,他引:2  
目的探讨shRNA表达载体的构建方法 ,以加速RNA干扰研究的进程。方法对shRNA表达载体的构建过程进行分析和监测 ,并加以优化。结果发现shRNA表达载体构建的退火过程容易产生障碍 ,经优化退火缓冲液的NaCl含量后 ,能明显提高退火效率及shRNA表达载体构建的成功率。结论shRNA表达载体构建的退火过程需加以关注 ,退火缓冲液中NaCl含量应提高至 2 0 0mmol/L以上为宜  相似文献   

12.
目的:构建细丝蛋白A(FLNa)基因的小干扰RNA(siRNA)表达载体,并观察其对FLNa基因表达的抑制作用。方法:利用RNA干扰(RNAi)技术设计并合成1条针对FLNa的siRNA,将其克隆到siRNA表达载体pSilencer4.1-CMV-hygro中;将重组质粒pSilencer-FLNa、pSilencer-negative(阴性对照)转染293T人胚肾细胞,通过Western印迹检测FLNa的表达;通过潮霉素筛选建立干扰FLNa表达的前列腺癌细胞。结果:PCR鉴定证明构建了FLNa基因RNAi载体;Western印迹表明构建的FLNa基因干扰载体能够有效地抑制FLNa基因的表达;建立了稳定干扰FLNa表达的前列腺癌C4-2细胞。结论:构建了FLNa基因RNAi载体,该载体能够有效地抑制FLNa基因的表达。  相似文献   

13.
目的:构建具有多种剪接形式的RNA结合蛋白(RBPMS)基因siRNA的真核表达载体,观察其对RBPMS表达的影响。方法:利用RNA干扰(RNAi)技术,设计并合成了2条针对RBPMS基因的siRNA,将其克隆到siRNA表达载体pSliencer2.1-U6neo上。将重组质粒和带FLAG标签的RBPMS共转染293T人胚肾细胞,通过Western印迹检验RNAi效应。结果:测序证明成功构建了RBPMSsiRNA真核表达载体;Western印迹表明构建的siRNA能有效地抑制RBPMS基因的表达。结论:构建了RBPMSsiRNA的真核表达载体,该siRNA能有效地抑制RBPMS基因的表达。  相似文献   

14.
15.
利用杆状病毒表达系统表达金鱼生长激素I基因   总被引:4,自引:1,他引:4  
以不含起始密码ATG的质粒Psxivvi+X3为转移载体,将编码金鱼生长激素I的Cdna插入粉纹夜蛾核型多角体病毒(TnNPV)基因组中,构建了形成多角体的重组病毒株TnNPV—SX+gfGHl21a。该毒株能利用合成多角体XIV串联启动子,在重组病毒感染的草地贪夜蛾(Spodoptera frugiperda,Sf)昆虫细胞及银纹夜蛾幼虫中表达金鱼生长激素I基因。感染离体细胞及虫俸后的蛋白SDS聚丙烯酰胺凝胶电泳表明.所表达的蛋白分子量为22.5kDa,与理论计算值相符。Westem印迹证实。金鱼生长激素特异蛋白得到表达。  相似文献   

16.
Cells grow in response to nutrients or growth factors, whose presence is detected and communicated by elaborate signaling pathways. Protein kinases play crucial roles in processes such as cell cycle progression and gene expression, and misregulation of such pathways has been correlated with various diseased states. Signals intended to promote cell growth converge on ribosome biogenesis, as the ability to produce cellular proteins is intimately tied to cell growth. Part of the response to growth signals is therefore the coordinate expression of genes encoding ribosomal RNA (rRNA) and ribosomal proteins (RP). A key player in regulating cell growth is the Target of Rapamycin (TOR) kinase, one of the gatekeepers that prevent cell cycle progression from G1 to S under conditions of nutritional stress. TOR is structurally and functionally conserved in all eukaryotes. Under favorable growth conditions, TOR is active and cells maintain a robust rate of ribosome biogenesis, translation initiation and nutrient import. Under stress conditions, TOR signaling is suppressed, leading to cell cycle arrest, while the failure of TOR to respond appropriately to environmental or nutritional signals leads to uncontrolled cell growth. Emerging evidence from Saccharomyces cerevisiae indicates that High Mobility Group (HMGB) proteins, non-sequence-specific chromosomal proteins, participate in mediating responses to growth signals. As HMGB proteins are distinguished by their ability to alter DNA topology, they frequently function in the assembly of higher-order nucleoprotein complexes. We review here recent evidence, which suggests that HMGB proteins may function to coordinate TOR-dependent regulation of rRNA and RP gene expression.Key Words: Rapamycin, TORC1, HMO1, high mobility group, yeast, RP gene, rDNA.  相似文献   

17.
外源RNA干涉基因在烟草中的转化及表达   总被引:1,自引:0,他引:1  
依据RNA干涉机制,以TMV复制酶基因为靶标基因,针对TMV 5个株系复制酶基因间高度同源序列设计引物,经RT-PCR反应获得靶序列,构建靶序列反向重复结构的RNA干涉双元载体.用根癌农杆菌介导将外源基因转化至烟草品种K326基因组中,培育RNA干涉转基因烟草.人工接种病毒验证转基因烟草中外源基因在植物抗病毒能力方面的表达效果,实时荧光定量PCR分析转基因烟草抗病毒能力.结果表明,实验培育的RNA干涉转基因烟草67%对TMV呈现高度抗性;荧光定量PCR分析显示,对TMV具高度抗性的转基因烟草中病毒复制酶基因转录产物mRNA存在很大程度的降解,证实了RNA干涉技术在培育抗病毒烟草品种中的效果.  相似文献   

18.
小分子干扰RNA(siRNAs)可以高效、特异地阻断体内同源基因的表达,促进同源mRNA降解,称为RNA干扰(RNAi)。本研究旨在探讨Smad7基因的siRNAs是否能抑制基因的表达。利用RNA干扰技术,设计并合成了针对Smad7基因的siRNAs,用脂质体转染法瞬时转染BEP2D和BERP35T2细胞,用Northern blot法检测RNAi效应;同时设计并合成了绿色荧光蛋白(GFP)的siRNAs,瞬时转染稳定表达绿色荧光蛋白的BERP35T2细胞,检测荧光强度有无改变。结果表明RNA干扰技术能明显抑制Smad7基因的表达,并能显减弱绿色荧光的表达强度,为进一步研究Smad7基因功能及TGF-β信号转导通路奠定了基础。  相似文献   

19.
Plasmonics - Here, a novel plasmon-induced transparency (PIT) sensing platform based on a Kretschmann–Raether configuration with graphene/J-aggregate materials is proposed. The J-aggregate...  相似文献   

20.
Cytopathogenesis and Inhibition of Host Gene Expression by RNA Viruses   总被引:13,自引:0,他引:13       下载免费PDF全文
Many viruses interfere with host cell function in ways that are harmful or pathological. This often results in changes in cell morphology referred to as cytopathic effects. However, pathogenesis of virus infections also involves inhibition of host cell gene expression. Thus the term “cytopathogenesis,” or pathogenesis at the cellular level, is meant to be broader than the term “cytopathic effects” and includes other cellular changes that contribute to viral pathogenesis in addition to those changes that are visible at the microscopic level. The goal of this review is to place recent work on the inhibition of host gene expression by RNA viruses in the context of the pathogenesis of virus infections. Three different RNA virus families, picornaviruses, influenza viruses, and rhabdoviruses, are used to illustrate common principles involved in cytopathogenesis. These examples were chosen because viral gene products responsible for inhibiting host gene expression have been identified, as have some of the molecular targets of the host. The argument is made that the role of the virus-induced inhibition of host gene expression is to inhibit the host antiviral response, such as the response to double-stranded RNA. Viral cytopathogenesis is presented as a balance between the host antiviral response and the ability of viruses to inhibit that response through the overall inhibition of host gene expression. This balance is a major determinant of viral tissue tropism in infections of intact animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号