共查询到14条相似文献,搜索用时 0 毫秒
1.
The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes 总被引:1,自引:0,他引:1
Macroautophagy, a constitutive process in higher eukaryotic cells, mediates degradation of many long-lived proteins and organelles. The actual events occurring during the process in the dynamic system of a living cell have never been thoroughly investigated. We aimed to develop a live-cell assay in which to follow the complete itinerary of an autophagosome. Our experiments show that autophagosomes are formed randomly in peripheral regions of the cell. They then move bidirectionally along microtubules, accumulating at the microtubule-organizing centre, in a similar way to lysosomes. Their centripetal movement is dependent on the motor protein dynein and is important for their fusion with lysosomes. Initially, autophagosomes dock on to lysosomes, independent of lysosomal acidification. Two kinds of fusion then occur: complete fusions, creating a hybrid organelle, or more often kiss-and-run fusions, i.e. transfer of some content while still maintaining two separate vesicles. Surprisingly, the autophagolysosomal compartment seems to be more long lived than expected. Our study documents many aspects of autophagosome behaviour, adding to our understanding of the mechanism and control of autophagy. Indeed, although the formation of autophagosomes is completely different from any other vesicular structures, their later itinerary appears to be very similar to those of other trafficking pathways. 相似文献
2.
Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a “self-eating” process and plays a “house-cleaner” role in cells. The complex process consists of several sequential steps—induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autophagy, including cellular events after fusion step, are summarized. 相似文献
3.
The NH(2)-terminal transmembrane and lumenal domains of LGP85 are needed for the formation of enlarged endosomes/lysosomes 总被引:1,自引:0,他引:1
Kuronita T Hatano T Furuyama A Hirota Y Masuyama N Saftig P Himeno M Fujita H Tanaka Y 《Traffic (Copenhagen, Denmark)》2005,6(10):895-906
LGP85 is a lysosomal membrane protein possessing a type III topology and is also known as a member of the CD36 superfamily of proteins, such as CD36 and the scavenger-receptor BI (SR-BI). We have recently demonstrated that overexpression of LGP85 in various mammalian cell lines causes the enlargement of endosomal/lysosomal compartments (ELCs). Using chimeras and deletion mutants, we show here that the lumenal region of LGP85 is necessary, but not sufficient, for the development of ELCs. Effective formation of enlarged ELC was largely dependent on the presence of a preceding NH2 -terminal transmembrane segment. Analyses of deletion mutants within the lumenal domain further revealed a requirement of the NH2 -terminal transmembrane proximal lumenal region, with high sequence similarity with SR-BI for the enlargement of ELC. These results suggest that an interaction of the NH2 -terminal transmembrane proximal lumenal domain of LGP85 with the inner leaflet of endosomal/lysosomal membranes through the connection with the transmembrane domain is an essential determinant for the regulation of endosomal/lysosomal membrane traffic. Interestingly, although the NH2 -terminal transmembrane domain itself was not sufficient for the enlargement of ELCs, it appeared to be required for direct targeting of LGP85 from the trans -Golgi network to late endosomes/lysosomes. Taken together, these results indicate the involvement of distinct domain of LGP85 in the targeting to, and biogenesis and maintenance of, ELC. 相似文献
4.
5.
《Autophagy》2013,9(10):1642-1646
Phagophores engulf cytoplasmic material and give rise to autophagosomes, double-membrane vesicles mediating cargo transport to lysosomes for degradation. The regulation of autophagosome fusion with endosomes and lysosomes during autophagy has remained poorly characterized. Two recent papers conclude that STX17/syntaxin 17 (Syx17 in Drosophila) has an evolutionarily conserved role in autophagosome fusion with endosomes and lysosomes, acting in one SNARE complex with SNAP29 (ubisnap in Drosophila) and the endosomal/lysosomal VAMP8 (CG1599/Vamp7 in Drosophila). Surprisingly, a third report suggests that STX17 might also contribute to proper phagophore assembly. Although several experiments presented in the two human cell culture studies yielded controversial results, the essential role of STX17 in autophagic flux is now firmly established, both in cultured cells and in an animal model. Based on these data, we propose that genetic inhibition of STX17/Syx17 may be a more specific tool in autophagic flux experiments than currently used drug treatments, which impair all lysosomal degradation routes and also inactivate MTOR (mechanistic target of rapamycin), a major negative regulator of autophagy. Finally, the neuronal dysfunction and locomotion defects observed in Syx17 mutant animals point to the possible contribution of defective autophagosome clearance to various human diseases. 相似文献
6.
7.
8.
We have investigated the requirement for Ca(2+) in the fusion and content mixing of rat hepatocyte late endosomes and lysosomes in a cell-free system. Fusion to form hybrid organelles was inhibited by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA), but not by EGTA, and this inhibition was reversed by adding additional Ca(2+). Fusion was also inhibited by methyl ester of EGTA (EGTA-AM), a membrane permeable, hydrolyzable ester of EGTA, and pretreatment of organelles with EGTA-AM showed that the chelation of lumenal Ca(2+) reduced the amount of fusion. The requirement for Ca(2+) for fusion was a later event than the requirement for a rab protein since the system became resistant to inhibition by GDP dissociation inhibitor at earlier times than it became resistant to BAPTA. We have developed a cell-free assay to study the reformation of lysosomes from late endosome-lysosome hybrid organelles that were isolated from the rat liver. The recovery of electron dense lysosomes was shown to require ATP and was inhibited by bafilomycin and EGTA-AM. The data support a model in which endocytosed Ca(2+) plays a role in the fusion of late endosomes and lysosomes, the reformation of lysosomes, and the dynamic equilibrium of organelles in the late endocytic pathway. 相似文献
9.
10.
11.
12.
13.