首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal cell carcinoma (RCC) accounts for 3% of new cancer incidence and mortality in the United States. Studies in RCC have predominantly focused on VEGF in promoting tumor-associated angiogenesis. However, other angiogenic factors may contribute to the overall angiogenic milieu of RCC. We hypothesized that the CXCR2/CXCR2 ligand biological axis represents a mechanism by which RCC cells promote angiogenesis and facilitate tumor growth and metastasis. Therefore, we first examined tumor biopsies and plasma of patients with metastatic RCC for levels of CXCR2 ligands, and RCC tumor biopsies for the expression of CXCR2. The proangiogenic CXCR2 ligands CXCL1, CXCL3, CXCL5, and CXCL8, as well as VEGF were elevated in the plasma of these patients and found to be expressed within the tumors. CXCR2 was found to be expressed on endothelial cells within the tumors. To assess the role of ELR(+) CXC chemokines in RCC, we next used a model of syngeneic RCC (i.e., RENCA) in BALB/c mice. CXCR2 ligand and VEGF expression temporally increased in direct correlation with RENCA growth in CXCR2(+/+) mice. However, there was a marked reduction of RENCA tumor growth in CXCR2(-/-) mice, which correlated with decreased angiogenesis and increased tumor necrosis. Furthermore, in the absence of CXCR2, orthotopic RENCA tumors demonstrated a reduced potential to metastasize to the lungs of CXCR2(-/-) mice. These data support the notion that CXCR2/CXCR2 ligand biology is an important component of RCC tumor-associated angiogenesis and tumorigenesis.  相似文献   

2.
Preterm birth is a major contributor to neonatal mortality and morbidity. Infection results in elevation of inflammation‐related cytokines followed by infiltration of immune cells into gestational tissue. CXCL12 levels are elevated in preterm birth indicating it may have a role in preterm labour (PTL); however, the pathophysiological correlations between CXCL12/CXCR4 signalling and premature labour are poorly understood. In this study, PTL was induced using lipopolysaccharide (LPS) in a murine model. LPS induced CXCL12 RNA and protein levels significantly and specifically in myometrium compared with controls (3‐fold and 3.5‐fold respectively). Highest levels were found just before the start of labour. LPS also enhanced the infiltration of neutrophils, macrophages and T cells, and induced macrophage M1 polarization. In vitro studies showed that condition medium from LPS‐treated primary smooth muscle cells (SMC) induced macrophage migration, M1 polarization and upregulated inflammation‐related cytokines such as interleukin (IL)‐1, IL‐6 and tumor necrosis factor alpha (TNF‐α). AMD3100 treatment in pregnant mice led to a significant decrease in the rate of PTL (70%), prolonged pregnancy duration and suppressed macrophage infiltration into gestation tissue by 2.5‐fold. Further, in‐vitro treatment of SMC by AMD3100 suppressed the macrophage migration, decreased polarization and downregulated IL‐1, IL‐6 and TNF‐α expression. LPS treatment in pregnant mice induced PTL by increasing myometrial CXCL12, which recruits immune cells that in turn produce inflammation‐related cytokines. These effects stimulated by LPS were completely reversed by AMD3100 through blocking of CXCL12/CXCR4 signalling. Thus, the CXCL12/CXCR4 axis presents an excellent target for preventing infection and inflammation‐related PTL.  相似文献   

3.
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. Using murine models of malaria, we found much greater up-regulation of a number of chemokine mRNAs, including those for CXCR3 and its ligands, in the brain during fatal murine CM (FMCM) than in a model of non-CM. Expression of CXCL9 and CXCL10 RNA was localized predominantly to the cerebral microvessels and in adjacent glial cells, while expression of CCL5 was restricted mainly to infiltrating lymphocytes. The majority of mice deficient in CXCR3 were found to be protected from FMCM, and this protection was associated with a reduction in the number of CD8+ T cells in brain vessels as well as reduced expression of perforin and FasL mRNA. Adoptive transfer of CD8+ cells from C57BL/6 mice with FMCM abrogated this protection in CXCR3-/- mice. Moreover, there were decreased mRNA levels for the proinflammatory cytokines IFN-gamma and lymphotoxin-alpha in the brains of mice protected from FMCM. These data suggest a role for CXCR3 in the pathogenesis of FMCM through the recruitment and activation of pathogenic CD8+ T cells.  相似文献   

4.
Bronchiolitis obliterans syndrome (BOS) is the major limitation to survival post-lung transplantation and is characterized by a persistent peribronchiolar inflammation that eventually gives way to airway fibrosis/obliteration. Acute rejection is the main risk factor for the development of BOS and is characterized by a perivascular/bronchiolar leukocyte infiltration. The specific mechanism(s) by which these leukocytes are recruited have not been elucidated. The CXC chemokines (monokine induced by IFN-gamma (MIG)/CXC chemokine ligand (CXCL)9, IP-10/CXCL10, and IFN-inducible T cell alpha chemoattractant (ITAC)/CXCL11) act through their shared receptor, CXCR3. Because they are potent leukocyte chemoattractants and are involved in other inflammation/fibroproliferative diseases, we hypothesized that the expression of these chemokines during an allogeneic response promotes the persistent recruitment of mononuclear cells, leading to chronic lung rejection. We found that elevated levels of MIG/CXCL9, IFN-inducible protein 10 (IP-10)/CXCL10, and ITAC/CXCL11 in human bronchoalveolar lavage fluid were associated with the continuum from acute to chronic rejection. Translational studies in a murine model demonstrated increased expression of MIG/CXCL9, IP-10/CXCL10, and ITAC/CXCL11 paralleling the recruitment of CXCR3-expressing mononuclear cells. In vivo neutralization of CXCR3 or its ligands MIG/CXCL9 and IP-10/CXCL10 decreased intragraft recruitment of CXCR3-expressing mononuclear cells and attenuated BOS. This supports the notion that ligand/CXCR3 biology plays an important role in the recruitment of mononuclear cells, a pivotal event in the pathogenesis of BOS.  相似文献   

5.
Since the discovery that CXCR7 binds to CXCL12/SDF-1α, the role of CXCR7 in CXCL12-mediated biological processes has been under intensive scrutiny. However, there is no consensus in the literature on the expression of CXCR7 protein by peripheral blood cells. In this study we analyzed human and mouse leukocytes and erythrocytes for CXCR7 protein expression, using a competitive CXCL12 binding assay as well as by flow cytometry and immunohistochemistry using multiple CXCR7 Abs. CXCR7(-/-) mice were used as negative controls. Together, these methods indicate that CXCR7 protein is not expressed by human peripheral blood T cells, B cells, NK cells, or monocytes, or by mouse peripheral blood leukocytes. CXCR7 protein is, however, expressed on mouse primitive erythroid cells, which supply oxygen to the embryo during early stages of development. These studies therefore suggest that, whereas CXCR7 protein is expressed by primitive RBCs during murine embryonic development, in adult mammals CXCR7 protein is not expressed by normal peripheral blood cells.  相似文献   

6.
7.
Metastatic renal cell carcinoma (RCC) responds poorly to chemo- or radiation therapy but appears to respond to systemic immunotherapy (i.e., IL-2 and/or IFN-alpha), albeit with only 5-10% durable response. The CXCR3/CXCR3 ligand biological axis plays an important role in mediating type 1 cytokine-dependent cell-mediated immunity, which could be beneficial for attenuating RCC if optimized. We found that systemic IL-2 induced the expression of CXCR3 on circulating mononuclear cells but impaired the CXCR3 ligand chemotactic gradient from plasma to tumor by increasing circulating CXCR3 ligand levels in a murine model of RCC. Moreover, the antitumor effect of systemic IL-2 was CXCR3-dependent, as IL-2 failed to inhibit tumor growth and angiogenesis in CXCR3-/- mice. We hypothesized that the immunotherapeutic effect of the CXCR3/CXCR3 ligand biological axis could be optimized by first priming with systemic IL-2 to induce CXCR3 expression on circulating mononuclear cells followed by enhancing the intratumor CXCR3 ligand levels to establish optimal CXCR3-dependent chemotactic gradient. We found that combined systemic IL-2 with an intratumor CXCR3 ligand (CXCL9) lead to significantly greater reduction in tumor growth and angiogenesis, increased tumor necrosis, and increased intratumor infiltration of CXCR3+ mononuclear cells, as compared with either IL-2 or CXCL9 alone. The enhanced antitumor effect of the combined strategy was associated with a more optimized CXCR3-dependent chemotactic gradient and increased tumor-specific immune response. These data suggest that the combined strategy of systemic IL-2 with intratumor CXCR3 ligand is more efficacious than either strategy alone for reducing tumor-associated angiogenesis and augmenting tumor-associated immunity, the concept of immunoangiostasis.  相似文献   

8.
Studies in experimental animal models have demonstrated that chemokines produced by tumor cells attract chemokine receptor-positive T lymphocytes into the tumor area, which may lead to tumor growth inhibition in vitro and in vivo. However, in cancer patients, the role of chemokines in T lymphocyte trafficking toward human tumor cells is relatively unexplored. In the present study, the role of chemokines and their receptors in the migration of a melanoma patient's CTL toward autologous tumor cells has been studied in a novel organotypic melanoma culture, consisting of a bottom layer of collagen type I with embedded fibroblasts followed successively by a tumor cell layer, collagen/fibroblast separating layer, and, finally, a top layer of collagen with embedded fibroblasts and T cells. In this model, CTL migrated from the top layer through the separating layer toward tumor cells, resulting in tumor cell apoptosis. CTL migration was mediated by chemokine receptor CXCR4 expressed by the CTL and CXCL12 (stromal cell-derived factor 1alpha) secreted by tumor cells, as evidenced by blockage of CTL migration by Abs to CXCL12 or CXCR4, high concentrations of CXCL12 or small molecule CXCR4 antagonist. These studies, together with studies in mice indicating regression of CXCL12-transduced tumor cells, followed by regression of nontransduced challenge tumor cells, suggest that CXCL12 may be useful as an immunotherapeutic agent for cancer patients, when transduced into tumor cells, or fused to anti-tumor Ag Ab or tumor Ag.  相似文献   

9.
Arrestins are adaptor/scaffold proteins that complex with activated and phosphorylated G protein-coupled receptor to terminate G protein activation and signal transduction. These complexes also mediate downstream signaling, independently of G protein activation. We have previously shown that beta-arrestin-2 (betaarr2) depletion promotes CXCR2-mediated cellular signaling, including angiogenesis and excisional wound closure. This study was designed to investigate the role of betaarr2 in tumorigenesis using a murine model of lung cancer. To that end, heterotopic murine Lewis lung cancer and tail vein metastasis tumor model systems in betaarr2-deficient mice (betaarr2(-/-)) and control littermates (betaarr2(+/+)) were used. betaarr2(-/-) mice exhibited a significant increase in Lewis lung cancer tumor growth and metastasis relative to betaarr2(+/+) mice. This correlated with decreased number of tumor-infiltrating lymphocytes but with elevated levels of the ELR(+) chemokines (CXCL1/keratinocyte-derived chemokine and CXCL2/MIP-2), vascular endothelial growth factor, and microvessel density. NF-kappaB activity was also enhanced in betaarr2(-/-) mice, whereas hypoxia-inducible factor-1alpha expression was decreased. Inhibition of CXCR2 or NF-kappaB reduced tumor growth in both betaarr2(-/-) and betaarr2(+/+) mice. NF-kappaB inhibition also decreased ELR(+) chemokines and vascular endothelial growth factor expression. Altogether, the data suggest that betaarr2 modulates tumorigenesis by regulating inflammation and angiogenesis through activation of CXCR2 and NF-kappaB.  相似文献   

10.
Immunomodulatory role of CXCR2 during experimental septic peritonitis   总被引:3,自引:0,他引:3  
The loss of CXCR2 expression by neutrophils is a well-described, but poorly understood, consequence of clinical sepsis. To address the potential impact of this CXCR2 deficit during the septic response, we examined the role of CXCR2 in a murine model of septic peritonitis provoked by cecal ligation and puncture (CLP). CLP-induced mouse mortality was significantly attenuated with i.v. or i.p. administration of an affinity-purified murine CXCR2-specific polyclonal Ab. Mouse survival required Ab administration before and every 2 days following CLP. Furthermore, mice deficient in CXCR2 (CXCR2(-/-)) were significantly protected against CLP-induced mortality compared with control (CXCR2(+/+)) mice. The anti-CXCR2 Ab treatment delayed, but did not completely inhibit, the recruitment of leukocytes, specifically neutrophils, into the peritoneal cavity. Peritoneal macrophages from anti-CXCR2 Ab-treated mice exhibited markedly increased RNA and protein levels of several key proinflammatory cytokines and chemokines. Specifically, isolated preparations of these cells released approximately 11-fold more CXCL10 protein compared with peritoneal macrophages from control-treated or naive mice. CXCR2(-/-) mice had higher resting and CLP-induced levels of peritoneal CXCL10 compared with CXCR2(+/+) mice. Administration of a neutralizing, affinity-purified, murine CXCL10-specific polyclonal Ab before CLP in wild-type mice and every 2 days after surgery significantly increased mortality compared with control Ab-treated mice. Anti-CXCL10 treatment in CXCR2(-/-) mice negated the protective effect associated with the absence of CXCR2. In summary, these data demonstrate that the absence of CXCR2 protects mice from septic injury potentially by delaying inflammatory cell recruitment and enhancing CXCL10 expression in the peritoneum.  相似文献   

11.
The transmembrane chemokine CXCL16 is expressed by dendritic and vascular cells and mediates chemotaxis and adhesion of activated T cells via the chemokine receptor CXCR6/Bonzo. Here we describe the expression and shedding of this chemokine by glioma cells in situ and in vitro. By quantitative RT-PCR and immunohistochemistry, we show that CXCL16 is highly expressed in human gliomas, while expression in normal brain is low and mainly restricted to brain vascular endothelial cells. In cultivated human glioma cells as well as in activated mouse astroglial cells, CXCL16 mRNA and protein is constitutively expressed and further up-regulated by tumour necrosis factor alpha (TNFalpha) and interferon-gamma (IFNgamma). CXCL16 is continuously released from glial cells by proteolytic cleavage which is rapidly enhanced by stimulation with phorbol-12-myristate-13-acetate (PMA). As shown by inhibitor studies, two distinct members of the disintegrin-like metalloproteinase family ADAM10 and 17 are involved in the constitutive and PMA-induced shedding of glial CXCL16. In addition to the chemokine, its receptor CXCR6 could be detected by quantitative RT-PCR in human glioma tissue, cultivated murine astrocytes and at a lower level in microglial cells. Functionally, recombinant soluble CXCL16 enhanced proliferation of CXCR6-positive murine astroglial and microglial cells. Thus, the transmembrane chemokine CXCL16 is expressed in the brain by malignant and inflamed astroglial cells, shed to a soluble form and targets not only activated T cells but also glial cells themselves.  相似文献   

12.
Chemokines are important mediators of chemotaxis, cell adherence, and proliferation and exert specific functions in bone remodeling. Despite the potential intriguing role of chemokines in the regulation of osteoclast (OC) functions, little is known about the expression of chemokines and their receptors in human OCs at different stages of differentiation. Therefore, we analyzed the expression of CXC chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5) and ligands (CXCL8, CXCL10, CXCL12 and CXCL13) both at molecular and protein levels, in human OCs grown on plastic or calcium phosphate-coated slides at different stages of differentiation. Real-time PCR showed that CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCL8 were expressed in undifferentiated cells and significantly decreased during OC differentiation. By contrast, CXCL10 and CXCL12 were strongly upregulated from day 0 to day 8 in cells grown on calcium phosphate-coated slides. Immunocytochemistry showed that OCs grown on plastic expressed CXCR3, CXCR4, CXCR5, CXCL8 and CXCL12, while they were negative for CXCR1, CXCR2 and CXCL10. Interestingly, both at molecular and protein levels CXCL10 and CXCL12 significantly increased only when cells were differentiated on calcium phosphate-coated slides. These data suggest that the selection of a substrate that better mimics the tridimensional structure of bone tissue, thus favoring OC maturation and differentiation, may be necessary when studying osteoclastogenesis in vitro.  相似文献   

13.
CXCL13/CXCR5 and CCL19/CCR7 play a quite important role in normal physiological conditions, but the functions of both chemokine/receptor pairs in pathophysiological events are not well-investigated. We have investigated expression and functions of CXCL13/CXCR5 and CCL19/CCR7 in CD23+CD5+ and CD23+CD5- B cells from cord blood (CB) and patients with B cell lineage acute or chronic lymphocytic leukemia (B-ALL or B-CLL). CXCR5 and CCR7 are selectively expressed on B-ALL, B-CLL, and CB CD23+CD5+ B cells at high frequency, but not on CD23+CD5- B cells. Although no significant chemotactic responsiveness was observed, CXCL13 and CCL19 cooperatively induce significant resistance to TNF-alpha-mediated apoptosis in B-ALL and B-CLL CD23+CD5+ B cells, but not in the cells from CB. B-ALL and B-CLL CD23+CD5+ B cells express elevated levels of paternally expressed gene 10 (PEG10). CXCL13 and CCL19 together significantly up-regulate PEG10 expression in the same cells. We have found that CXCL13 and CCL19 together by means of activation of CXCR5 and CCR7 up-regulate PEG10 expression and function, subsequently stabilize caspase-3 and caspase-8 in B-ALL and B-CLL CD23+CD5+ B cells, and further rescue the cells from TNF-alpha-mediated apoptosis. Therefore, we suggest that normal lymphocytes, especially naive B and T cells, use CXCL13/CXCR5 and CCL19/CCR7 for migration, homing, maturation, and cell homeostasis as well as secondary lymphoid tissues organogenesis. In addition, certain malignant cells take advantages of CXCL13/CXCR5 and CCL19/CCR7 for infiltration, resistance to apoptosis, and inappropriate proliferation.  相似文献   

14.
《Phytomedicine》2014,21(11):1310-1317
PurposeC-X-C chemokine receptor type 4 (CXCR4) signaling has been demonstrated to be involved in cancer invasion and migration; therefore, CXCR4 antagonist can serve as an anti-cancer drug by preventing tumor metastasis. This study aimed to identify the CXCR4 antagonists that could reduce and/or inhibit tumor metastasis from natural products.Methods and resultsAccording to the molecular docking screening, we reported here silibinin as a novel CXCR4 antagonist. Biochemical characterization showed that silibinin blocked chemokine ligand 12 (CXCL12)-induced CXCR4 internalization by competitive binding to CXCR4, therefore inhibiting downstream intracellular signaling. In human breast cancer cells MDA-MB-231, which expresses high levels of CXCR4, inhibition of CXCL12-induced chemomigration can be found under silibinin treatment. Overexpression of CXCL12 sensitized MDA-MB-231 cells to the inhibition of silibinin, which was abolished by CXCR4 knockdown. The inhibition of silibinin was also observed in MCF-7/CXCR4 cells rather than MCF-7 cells that express low level of CXCR4.ConclusionsOur work demonstrated that silibinin is a novel CXCR4 antagonist that may have potential therapeutic use for prevention of tumor metastasis.  相似文献   

15.
Complement C3a promotes CXCL12-induced migration and engraftment of human and murine hemopoietic progenitor cells, suggesting a cross-influence between anaphylatoxin and chemokine axes. Here we have explored the underlying mechanism(s) of complement anaphylatoxin and chemokine cooperation. In addition to C3a, C3a-desArg and C4a but not C5a, are potent enhancers of CXCL12-induced chemotaxis of human and murine bone marrow (BM) stem/progenitor cells and B lineage cells. C3a enhancement of chemotaxis is chemokine specific because it is also observed for chemotaxis to CCL19 but not to CXCL13. The potentiating effect of C3a on CXCL12 is independent of the classical C3a receptor (C3aR). First, human BM CD34(+) and B lineage cells do not express C3aR by flow cytometry. Second, the competitive C3aR inhibitor SB290157 does not affect C3a-mediated enhancement of CXCL12-induced chemotaxis. Third, enhancement of chemotaxis of hemopoietic cells is also mediated by C3a-desArg, which does not bind to C3aR. Finally, C3a enhances CXCL12-induced chemotaxis of BM cells from C3aR knockout mice similar to BM cells from wild-type mice. Subsequent studies revealed that C3a increased the binding affinity of CXCL12 to human CXCR4(+)/C3aR(-), REH pro-B cells, which is compatible with a direct interaction between C3a and CXCL12. BM stromal cells were able to generate C3a, C3a-desArg, C4a, as well as CXCL12, suggesting that this pathway could function in vivo. Taken together, we demonstrate a C3a-CXCL12 interaction independent of the C3aR, which may provide a mechanism to modulate the function of CXCL12 in the BM microenvironment.  相似文献   

16.
Skin-derived migratory dendritic cells (DC), in contrast to bone marrow-derived DC (BMDC), express CXCR5, respond to the chemokine CXC ligand 13 (CXCL13) in vitro, and are capable of migrating to B cell zones (BCZ) in lymph nodes (LN) in vivo. Herein, we analyzed the surface phenotype of skin-derived migratory DC and found that 15-35% of MHC class II(high) cells showed high levels of expression of CXCR5 but expressed low levels of DEC205, a suggested characteristic of dermal-type DC in mice. To study the effects of CXCR5 on the trafficking dynamics of DC, we stably expressed CXCR5 in BMDC by retroviral gene transduction. CXCR5 was detected by flow cytometry on transduced cells, which responded to CXCL13 in vitro in chemotaxis assays (3-fold over nontransduced BMDC, p < 0.01). When injected into the footpads of mice, approximately 40% of injected CXCR5-BMDC were observed in BCZ of draining LN. Mice were vaccinated with CXCR5- and vector-BMDC that were pulsed with keyhole limpet hemocyanin (KLH) to induce Ag-specific cellular and humoral immune responses. Mice injected with CXCR5-BMDC (vs vector-BMDC) demonstrated marginally less footpad swelling in response to intradermal injection of KLH. Interestingly, significantly higher levels of KLH-specific IgG (p < 0.05) and IgM (p < 0.01) were found in the serum of mice injected with CXCR5-BMDC compared with mice immunized with vector-transduced BMDC. Thus, CXCR5 is predominantly expressed by dermal-type DC. Moreover, CXCR5 directs BMDC to BCZ of LN in vivo and modifies Ag-specific immune responses induced by BMDC vaccination.  相似文献   

17.
18.
Chemokines and their receptors have been studied in several solid tumor models as mediators of inflammation. In turn, inflammation has been implicated in the promotion and progression of tumors, and as such, chemokines have been proposed as novel molecular targets for chemotherapy. While the expression of these molecules has been described in tumor cells, endothelial cells, macrophages and neutrophils, less attention has been paid to the expression profile of these molecules by T lymphocytes in the periphery or infiltrating the tumor. Using the D1-DMBA-3 murine mammary adenocarcinoma model, we aimed to better characterize the differential expression of chemokines and/or their receptors in the host and in the tumor microenvironment, and specifically, in the T cells of tumor-bearing mice compared to normal control animals. We found that T lymphocytes from tumor-bearing mice express the pro-inflammatory chemokines, CCL2, CCL5 and CXCL2, as well as the chemokine receptors, CCR1, CCR2, CCR3 and CXCR2.  相似文献   

19.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) Th1 T cell-mediated disease of the CNS, used to study certain aspects of multiple sclerosis. CXCR3, the receptor for CXCL10, CXCL9, and CXCL11, is preferentially expressed on activated Th1 T cells and has been proposed to govern the migration of lymphocytes into the inflamed CNS during multiple sclerosis and EAE. Unexpectedly, CXCL10-deficient mice were susceptible to EAE, leaving uncertain what the role of CXCR3 and its ligands might play in this disease model. In this study, we report that CXCR3(-/-) mice exhibit exaggerated severity of EAE compared with wild-type (CXCR3(+/+)) littermate mice. Surprisingly, there were neither quantitative nor qualitative differences in CNS-infiltrating leukocytes between CXCR3(+/+) and CXCR3(-/-) mice with EAE. Despite these equivalent inflammatory infiltrates, CNS tissues from CXCR3(-/-) mice with EAE showed worsened blood-brain barrier disruption and more von Willebrand factor-immunoreactive vessels within inflamed spinal cords, as compared with CXCR3(+/+) mice. Spinal cords of CXCR3(-/-) mice with EAE demonstrated decreased levels of IFN-gamma, associated with reduced inducible NO synthase immunoreactivity, and lymph node T cells from CXCR3(-/-) mice primed with MOG(35-55) secreted less IFN-gamma in Ag-driven recall responses than cells from CXCR3(+/+) animals. CXCR3(-/-) lymph node T cells also showed enhanced Ag-driven proliferation, which was reduced by addition of IFN-gamma. Taken with prior findings, our data show that CXCL10 is the most relevant ligand for CXCR3 in EAE. CXCR3 does not govern leukocyte trafficking in EAE but modulates T cell IFN-gamma production and downstream events that affect disease severity.  相似文献   

20.
Adoptive immunotherapy of cancer patients with cytolytic T lymphocytes (CTL) has been hampered by the inability of the CTL to home into tumors in vivo. Chemokines can attract T lymphocytes to the tumor site, as demonstrated in animal models, but the role of chemokines in T-lymphocyte trafficking toward human tumor cells is relatively unexplored. In the present study, the role of chemokines and their receptors in the migration of a colon carcinoma (CC) patient’s CTL toward autologous tumor cells has been studied in a novel three-dimensional organotypic CC culture. CTL migration was mediated by chemokine receptor CXCR3 expressed by the CTL and CXCL11 chemokine secreted by the tumor cells. Excess CXCL11 or antibodies to CXCL11 or CXCR3 inhibited migration of CTL to tumor cells. T cell and tumor cell analyses for CXCR3 and CXCL11 expression, respectively, in ten additional CC samples, may suggest their involvement in other CC patients. Our studies, together with previous studies indicating angiostatic activity of CXCL11, suggest that CXCL11 may be useful as an immunotherapeutic agent for cancer patients when transduced into tumor cells or fused to tumor antigen-specific Ab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号