首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is renewed interest in metal-on-metal (MOM) total hip replacements (THRs), however, variable wear rates have been observed clinically. It is hypothesised that changes in soft tissue tensioning during surgery may alter loading of THRs during the swing phase of gait leading to changes in fluid film lubrication, friction and wear. This study aimed to assess the effect of swing phase load on the lubrication, friction and wear of MOM hip replacements. Theoretical lubrication modelling was carried out using elastohydrodynamic theory. All the governing equations were solved numerically for the lubricant film thickness between the articulating surfaces under the transient dynamic conditions with low and high swing phase loads. Friction testing was completed using a single axis pendulum simulator, simplified loading cycles were applied with low and high swing phase loads. MOM hip replacements were tested in a hip simulator, modified to provide different swing phase loading regimes; a low (100 N) and a high load (as per ISO 14242-1; 280 N). Results demonstrated that the performance of MOM bearings is highly dependent on swing phase load. Hence, changes in the tension of the tissues at surgery and variations in muscle forces may increase swing phase load, reduce lubrication, increase friction and accelerate wear. This may explain some of the variations that have been observed with clinical wear rates.  相似文献   

2.
Musculo-skeletal loading plays an important role in the primary stability of joint replacements and in the biological processes involved in fracture healing. However, current knowledge of musculo-skeletal loading is still limited. In the past, a number of musculo-skeletal models have been developed to estimate loading conditions at the hip. So far, a cycle-to-cycle validation of predicted musculo-skeletal loading by in vivo measurements has not been possible. The aim of this study was to determine the musculo-skeletal loading conditions during walking and climbing stairs for a number of patients and compare these findings to in vivo data.Following total hip arthroplasty, four patients underwent gait analysis during walking and stair climbing. An instrumented femoral prosthesis enabled simultaneous measurement of in vivo hip contact forces. On the basis of CT and X-ray data, individual musculo-skeletal models of the lower extremity were developed for each patient. Muscle and joint contact forces were calculated using an optimization algorithm. The calculated peak hip contact forces both over- and under-estimated the measured forces. They differed by a mean of 12% during walking and 14% during stair climbing.For the first time, a cycle-to-cycle validation of predicted musculo-skeletal loading was possible for walking and climbing stairs in several patients. In all cases, the comparison of in vivo measured and calculated hip contact forces showed good agreement.Thus, the authors consider the presented approach as a useful means to determine valid conditions for the analysis of prosthesis loading, bone modeling or remodeling processes around implants and fracture stability following internal fixation.  相似文献   

3.
Formulation of a 3-D lubrication simulation of a total hip replacement in vivo is presented using a finite difference approach. The goal is to determine if hydrodynamic lubrication is taking place, how thick the joint fluid film is and over what percentage of two gait cycles, (walking and bicycling), the hydrodynamic lubricating action is occurring, if at all. The assumption of rigid surfaces is made, which is conservative in the sense that pure hydrodynamic lubrication is well known to predict thinner films than elasto-hydrodynamic lubrication (EHL) for the same loading. The simulation method includes addressing the angular velocity direction changes and accurate geometry configuration for the acetabular cup and femoral head components and provides a range of results for material combinations of CoCrMo-on-UHMWPE, CoCrMo-on-CoCrMo, and alumina-on-alumina components. Results are in the form of the joint fluid film pressure distributions, load components and film thicknesses of the joint fluid, for the gait cycles of walking and bicycling. Results show hydrodynamic action occurs in only about 10% of a walking gait cycle and throughout nearly 90% of a bicycling gait. During the 10% of the walking cycle that develops hydrodynamic lubrication, the minimum fluid film thicknesses are determined to be between 0.05 micron and 1.1 microns, while the range of film thicknesses for bicycling is between 0.1 micron and 1.4 microns, and occurs over 90% of the bicycling gait. Pressure distributions for these same periods are in the range of 2 MPa to 870 MPa for walking and 1 MPa to 24 MPa for bicycling.  相似文献   

4.
The continuing development of new, highly sophisticated materials for the articulating surfaces of total hip endoprostheses involves the need for testing, not only of biocompatibility and dynamic loadability, but also of tribological properties (friction, wear, lubrication). For decades, the wear resistance of these materials has been tested in wear simulators. In consequence of the currently often widely differing test methods, the technical committee (TC 150) of the ISO (International Organization for Standardization) has been concerned to develop an International Standard (ISO/FDIS 14242 1 and 2: Implants for Surgery--wear of total hip joint prostheses--on the basis of kinetic and kinematic data from gait analysis. This new standard will be the basis for ensuring the comparability of scientific data obtained from tribological testing of total hip endoprothesis. The new hip simulator, E-SIM, presented in this paper, complies with the currently published FDIS (Final Draft International Standard), and enables testing in accordance with these specifications.  相似文献   

5.
This work presents a framework for selection of subject-specific quasi-stiffness of hip orthoses and exoskeletons, and other devices that are intended to emulate the biological performance of this joint during walking. The hip joint exhibits linear moment-angular excursion behavior in both the extension and flexion stages of the resilient loading-unloading phase that consists of terminal stance and initial swing phases. Here, we establish statistical models that can closely estimate the slope of linear fits to the moment-angle graph of the hip in this phase, termed as the quasi-stiffness of the hip. Employing an inverse dynamics analysis, we identify a series of parameters that can capture the nearly linear hip quasi-stiffnesses in the resilient loading phase. We then employ regression analysis on experimental moment-angle data of 216 gait trials across 26 human adults walking over a wide range of gait speeds (0.75–2.63 m/s) to obtain a set of general-form statistical models that estimate the hip quasi-stiffnesses using body weight and height, gait speed, and hip excursion. We show that the general-form models can closely estimate the hip quasi-stiffness in the extension (R2 = 92%) and flexion portions (R2 = 89%) of the resilient loading phase of the gait. We further simplify the general-form models and present a set of stature-based models that can estimate the hip quasi-stiffness for the preferred gait speed using only body weight and height with an average error of 27% for the extension stage and 37% for the flexion stage.  相似文献   

6.
Although hip simulators for in vitro wear testing of prosthetic materials used in total hip arthroplasty (THA) have been available for a number of years, similar equipment has yet to appear for endurance testing of fixation in cemented THA, despite considerable evidence of late aseptic loosening as one of the most significant failure mechanisms in this type of replacements. An in vitro study of fatigue behavior in cemented acetabular replacements has been carried out, utilizing a newly developed hip simulator. The machine was designed to simulate the direction and the magnitude of the hip contact force under typical physiological loading conditions, including normal walking and stair climbing, as reported by Bergmann et al. (2001, Hip 98, Freie Universitaet, Berlin). A 3D finite element analysis has been carried out to validate the function of the hip simulator and to evaluate the effects of boundary conditions and geometry of the specimen on the stress distribution in the cement mantle. Bovine pelvic bones were implanted with a Charnley cup, using standard manual cementing techniques. Experiments were carried out under normal walking and descending stairs loading conditions with selected load levels from a body weight of 75-125 kg. Periodically, the samples were removed from the test rigs to allow CT scanning for the purpose of monitoring damage development in the cement fixation. The hip simulator was found to be satisfactory in reproducing the hip contact force during normal walking and stair climbing, as reported by Bergmann et al. Finite element analysis shows that the stress distributions in the cement mantle and at the bone-cement interface are largely unaffected by the geometry and the boundary conditions of the model. Three samples were tested up to 17 x 10(6) cycles and sectioned post-testing for microscopic studies. Debonding at the bone-cement interface of various degrees in the posterior-superior quadrant was revealed in these samples, and the location of the failures corresponds to the highest stressed region from the finite-element analysis. Preliminary experimental results from a newly developed hip simulator seem to suggest that debonding at the bone-cement interface is the main failure mechanism in cemented acetabular replacements, and descending stairs seem to be more detrimental than normal walking or ascending stairs with regard to fatigue integrity of cement fixation.  相似文献   

7.
Patient imaging and explant analysis has shown evidence of edge loading of hard-on-hard hip replacements in vivo. Experimental hip simulator testing under edge loading conditions has produced increased, clinically-relevant, wear rates for hard-on-hard bearings when compared to concentric conditions. Such testing, however, is time consuming and costly. A quick running computational edge loading model (Python Edge Loading (PyEL) - quasi-static, rigid, frictionless), capable of considering realistic bearing geometries, was developed. The aim of this study was to produce predictions of separation within the typical experimental measurement error of ∼0.5 mm. The model was verified and validated against comparable finite element (FE) models (including inertia and friction) and pre-existing experimental test data for 56 cases, covering a variety of simulated cup orientations, positions, tissue tensions, and loading environments. The PyEL model agreed well with both the more complex computational modelling and experimental results. From comparison with the FE models, the assumption of no inertia had little effect on the maximum separation prediction. With high contact force cases, the assumption of no friction had a larger effect (up to ∼5% error). The PyEL model was able to predict the experimental maximum separations within ∼0.3 mm. It could therefore be used to optimise an experimental test plan and efficiently investigate a much wider range of scenarios and variables. It could also help explain trends and damage modes seen in experimental testing through identifying the contact locations on the liner that are not easily measured experimentally.  相似文献   

8.
Hip contact forces and gait patterns from routine activities.   总被引:35,自引:0,他引:35  
In vivo loads acting at the hip joint have so far only been measured in few patients and without detailed documentation of gait data. Such information is required to test and improve wear, strength and fixation stability of hip implants. Measurements of hip contact forces with instrumented implants and synchronous analyses of gait patterns and ground reaction forces were performed in four patients during the most frequent activities of daily living. From the individual data sets an average was calculated. The paper focuses on the loading of the femoral implant component but complete data are additionally stored on an associated compact disc. It contains complete gait and hip contact force data as well as calculated muscle activities during walking and stair climbing and the frequencies of daily activities observed in hip patients. The mechanical loading and function of the hip joint and proximal femur is thereby completely documented. The average patient loaded his hip joint with 238% BW (percent of body weight) when walking at about 4 km/h and with slightly less when standing on one leg. This is below the levels previously reported for two other patients (Bergmann et al., Clinical Biomechanics 26 (1993) 969-990). When climbing upstairs the joint contact force is 251% BW which is less than 260% BW when going downstairs. Inwards torsion of the implant is probably critical for the stem fixation. On average it is 23% larger when going upstairs than during normal level walking. The inter- and intra-individual variations during stair climbing are large and the highest torque values are 83% larger than during normal walking. Because the hip joint loading during all other common activities of most hip patients are comparably small (except during stumbling), implants should mainly be tested with loading conditions that mimic walking and stair climbing.  相似文献   

9.
The elastohydrodynamic lubrication analysis was carried out in this study for a typical metal-on-metal hip-resurfacing prosthesis under a simple steady-state rotation. Both the Reynolds equation and the elasticity equation were coupled and solved numerically by the finite difference method. The finite element method was used to determine the elastic deformation of both the femoral and the acetabular components required for the lubrication analysis. The effect of the radial clearance between the femoral head and the acetabular cup on the predicted film thickness and pressure distribution was investigated. The predicted minimum lubricating film thickness was found to compare favourably with the prediction using the Hamrock and Dowson [J. Lubrication Technol. 100 (1978) 236] formula based on the assumption of ball-on-plane semi-infinite solids. This implies that the non-metallic materials such as bone and cement underlying the metallic components have a small effect on the predicted lubrication performance for the particular metal-on-metal hip-resurfacing prosthesis considered in this study. Under realistic physiological walking conditions, a decrease in the radial clearance from 150 to 50 microm resulted in a 137% increase in the predicted minimum film thickness from 19 to 45 nm. Consequently, given a surface roughness of 0.01 microm for both the metallic femoral and acetabular bearing surfaces, the predicted mixed lubrication regime for the larger clearance was changed to a full fluid film lubrication regime for the smaller clearance. This clearly highlighted the importance of the design and manufacturing parameters on the tribological performance of these hard-on-hard hip prostheses.  相似文献   

10.
Ceramic-on-metal (CoM) bearings are considered to be a promising alternative to polyethylene-based bearings or hard-on-hard bearings (Ceramic-on-Ceramic (CoC) and Metal-on-Metal (MoM)). Although, CoM shows lower wear rates than MoM, in-vitro wear testing of CoM shows widely varying results. This may be related to limitations of wear-measuring methods. Therefore, the aim of this study was to improve the gravimetric measurement technique and to test wear behaviour of CoM bearings compared to CoC bearings. Level walking according to ISO-14242 was simulated for four CoM and four CoC bearings. Prior to simulation, errors in measurement of gravimetric wear were detected and improvements in measurement technique incorporated. The results showed no differences in mean wear rates between CoM and CoC bearings. However, the CoM bearings showed wear results over a wide range of wear performance. High reliability of wear results was recorded for the CoC bearings. Material transfer was observed on the ceramic heads of the CoM bearings. Therefore, for level walking a partial mixed or boundary lubrication has to be assumed for this type of bearing. CoM is a highly sensitive wear-couple. The reasons for the observed behaviour cannot be clarified from this study. Simulator studies have to be considered as an ideal loading condition. Therefore, high variations in wear rates as seen in this study, even at low levels, may have an adverse effect on the in-vivo wear behavior. Careful clinical use may be advisable until the reasons for the variation are fully clarified and understood.  相似文献   

11.
The Re-Link Trainer (RLT) is a modified walking frame with a linkage system designed to apply a non-individualized kinematic constraint to normalize gait trajectory of the left limb. The premise behind the RLT is that a user’s lower limb is constrained into a physiologically normal gait pattern, ideally generating symmetry across gait cycle parameters and kinematics. This pilot study investigated adaptations in the natural gait pattern of healthy adults when using the RLT compared to normal overground walking. Bilateral lower limb kinematic and electromyography data were collected while participants walked overground at a self-selected speed, followed by walking in the RLT. A series of 2-way analyses of variance examined between-limb and between-condition differences. Peak hip extension and knee flexion were reduced bilaterally when walking in the RLT. Left peak hip extension occurred earlier in the gait cycle when using the RLT, but later for the right limb. Peak hip flexion was significantly increased and occurred earlier for the constrained limb, while peak plantarflexion was significantly reduced. Peak knee flexion and plantarflexion in the right limb occurred later when using the RLT. Significant bilateral reductions in peak electromyography amplitude were evident when walking in the RLT, along with a significant shift in when peak muscle activity was occurring. These findings suggest that the RLT does impose a significant constraint, but generates asymmetries in lower limb kinematics and muscle activity patterns. The large interindividual variation suggests users may utilize differing motor strategies to adapt their gait pattern to the imposed constraint.  相似文献   

12.
Micro-separation corresponds to a medial–lateral hip laxity after total hip replacement (THR). This laxity has been shown to generate higher wear rates and a specific pattern of stripe wear caused by edge loading of the head on the rim of the cup. Recently some authors have implicated edge loading as a source of noise generation and in particular squeaking. The goal of this study was to model hip kinematics under the micro-separation regime in a computational simulation of total hip prosthesis including joint laxity and to analyze the vibration frequencies and the potential for noise generation. A three-dimensional computer model of the Leeds II hip simulator was developed using ADAMS® software, simulating a controlled micro-separation during the swing phase of the walking cycle and replicating the experimental conditions previously reported.There was an excellent correlation between the theoretical values and the experimental values of the medial–lateral separation during the walking cycle. Vibratory frequencies were in the audible zone but were lower in magnitude than those reported clinically in relation to squeaking. Micro-separation and rim loading may explain the generation of some sounds from noisy hips after THR. However, the computational model, and the experimental model of micro-separation were unable to replicate the higher frequency squeaking reported clinically. In contrast, other experimental studies involving normal kinematics in combination with third-body particles have replicated clinically relevant frequencies and noises.  相似文献   

13.
Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR.  相似文献   

14.
Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.  相似文献   

15.
The purposes of this study was to test a mechanism to reduce the knee adduction moment by testing the hypothesis that increased medio-lateral trunk sway can reduce the knee adduction moment during ambulation in healthy subjects, and to examine the possibility that increasing medio-lateral trunk sway can produce similar potentially adverse secondary gait changes previously associated with reduced knee adduction moments in patients with knee osteoarthritis. Nineteen healthy adults performed walking trials with normal and increased medio-lateral trunk sway at a self-selected normal walking speed. Standard gait analysis was used to calculate three-dimensional lower extremity joint kinematics and kinetics. Knee and hip adduction moments were lower (-65.0% and -57.1%, respectively) for the increased medio-lateral trunk sway trials than for the normal trunk sway trials. Knee flexion angle at heel-strike was 3 degrees higher for the increased than for the normal trunk sway trials. Knee and hip abduction moments were higher for the increased medio-lateral trunk sway trials, and none of the other variables differed between the two conditions. Walking with increased medio-lateral trunk sway substantially reduces the knee adduction moment during walking in healthy subjects without some of the adverse secondary effects such as increased axial loading rates at the major joints of the lower extremity. This result supports the potential of using gait retraining for walking with increased medio-lateral trunk sway as treatment for patients with degenerative joint disease such as medial compartment knee osteoarthritis.  相似文献   

16.
In this paper we introduce a new method to expressly use live/corporeal data in quantifying differences of time series data with an underlying limit cycle attractor; and apply it using an example of gait data. Our intention is to identify gait pattern differences between diverse situations and classify them on group and individual subject levels. First we approximated the limit cycle attractors, from which three measures were calculated: δM amounts to the difference between two attractors (a measure for the differences of two movements), δD computes the difference between the two associated deviations of the state vector away from the attractor (a measure for the change in movement variation), and δF, a combination of the previous two, is an index of the change. As an application we quantified these measures for walking on a treadmill under three different conditions: normal walking, dual task walking, and walking with additional weights at the ankle. The new method was able to successfully differentiate between the three walking conditions. Day to day repeatability, studied with repeated trials approximately one week apart, indicated excellent reliability for δM (ICCave > 0.73 with no differences across days; p > 0.05) and good reliability for δD (ICCave  =  0.414 to 0.610 with no differences across days; p > 0.05). Based on the ability to detect differences in varying gait conditions and the good repeatability of the measures across days, the new method is recommended as an alternative to expensive and time consuming techniques of gait classification assessment. In particular, the new method is an easy to use diagnostic tool to quantify clinical changes in neurological patients.  相似文献   

17.
Objectives:We aimed to determine whether GS can help to plan and rearrange the treated side by using IMUs to measure the joint angle of the hip, knee, and ankle. We hypothesized that the kinematics in healthy individuals for both sides are approximately equal during walking.Methods:IMUs were used to measure the joint angles of 25 healthy participants during walking. The participants performed the 10-meter walk test. The normalized symmetry index (SInorm) was used to calculate the symmetry of joint angles for the hip, knee, and ankle throughout the gait cycle.Results:The SInorm demonstrated high symmetry between both legs; and the ranges were -1.5% and 1.1% for the hip, -3.0% and 3.1% for the knee, and -12% and 9.2% for the ankle joint angle throughout the gait cycle.Conclusion:The SInorm provides strong information that can be helpful in the planning process for the surgeries. Further, the IMUs system gives the possibility to measure the patients before their surgeries and use their data to plan and rearrange for the operated side.  相似文献   

18.
To examine functional differences in total hip replacement patients (THR) when stratified either by age or by functional ability as defined by self-selected walking speed. THR patients and a control group underwent three-dimensional motion analysis under self-selected normal and fast walking conditions. Patients were stratified into five age groups for comparison with existing literature. The THR cohort was also stratified into three functional groups determined by their self-selected gait speed (low function <1SD of total cohort’s mean walking speed; high function >1SD; normal function within 1SD). Hip kinematics, ground reaction forces, joint moments and joint powers in all three planes (x-y-z) were analysed. 137 THR and 27 healthy control patients participated. When stratified by age, during normal walking the youngest two age groups walked quicker than the oldest two groups (p < 0.0001) but between-group differences were not consistent across age strata. The differences were diminished under the fast walking condition. When stratified by function, under normal walking conditions, the low function and normal function THR groups had a reduced extension angle (mean = 1.75°, SD = ±7.75, 1.26° ± 7.42, respectively) compared to the control group (−6.07° ± 6.43; p < 0.0001). The low function group had a reduced sagittal plane hip power (0.75 W/kg ± 0.24), reduced flexor (0.60 Nm/kg ± 0.85) and extensor moment (0.51 Nm/kg ± 0.17) compared to controls (p < 0.0001). These differences persisted under the fast walking condition. There were systematic differences between patients when stratified by function, in both walking conditions. Age-related differences were less systematic. Stratifying by biomechanical factors such as gait speed, rather than age, might be more robust for investigating functional differences.  相似文献   

19.
The purpose of this study was to characterize biomechanically three different crouch walking patterns, artificially induced in eight neurologically intact subjects and to compare them to selected cases of pathological crouch walking. The subjects were equipped with a lightweight mechanical exoskeleton with artificial muscles that acted in parallel with hamstrings and iliopsoas muscles. They walked at a speed of approximately 1m/s along the walkway under four experimental conditions: normal walking (NW), hamstrings contracture emulation (HAM), iliopsoas contracture emulation (IPS) and emulation of both hamstrings and iliopsoas contractures (IPSHAM). Reflective markers and force platform data were collected and ankle, knee and hip-joint angles, moments and powers were calculated. HAM and IPSHAM shifted ankle-angle rotation profiles into dorsiflexion during midstance compared to IPS and NW where ankle-angle trajectories were similar. HAM, IPS and IPSHAM shifted the knee angle of rotation profiles into flexion during stance, compared to NW. IPS and IPSHAM shifted hip angle of rotation profiles toward pronounced flexion while HAM shifted hip angle of rotation profile toward extension, compared to NW. HAM and IPSHAM significantly increased ankle moment during midstance, compared to IPS and NW where ankle moment profiles were similar. All experimental conditions exhibited similar behavior in the knee-moment profiles during midstance while IPS and IPSHAM knee-moment profiles exhibited significantly higher knee-extension moment during terminal stance and pre-swing. In the hip joint all experimental conditions exhibited similar shape of hip moment profiles throughout the gait cycle. HAM and IPS kinematic and kinetic patterns were qualitatively compared to two selected clinical cases, showing considerable similarity. This implies that distinct differences in kinematics and kinetics between HAM, IPS and IPSHAM may be clinically relevant in helping determine the relative contribution of hamstrings and iliopsoas muscles contractures to particular crouch walking.  相似文献   

20.
Background: Footwear-generated medio-lateral foot center of pressure manipulation has been shown to have potential positive effects on gait parameters of hip osteoarthritis patients, ultimately reducing maximum joint reaction forces. The objective of this study was to investigate effects of medio-lateral foot center of pressure manipulation on muscle activity of hip-spanning and back muscles during gait in bilateral hip osteoarthritis patients. Methods: Foot center of pressure was shifted along the medio-lateral foot axis using a foot-worn biomechanical device allowing controlled center of pressure manipulation. Sixteen female bilateral hip osteoarthritis patients underwent electromyography analysis while walking in the device set to three parasagittal configurations: neutral (control), medial, and lateral. Seven hip-spanning muscles (Gluteus Medius, Gluteus Maximus, Tensor Fascia Latae, Rectus Femoris, Semitendinosis, Biceps Femoris, Adductor Magnus) and one back muscle (Erector Spinae) were analyzed. Magnitude and temporal parameters were calculated. Results: The amplitude and temporal parameter varied significantly between foot center of pressure positions for 5 out of 8 muscles each for either the more or less symptomatic leg in at least one subphase of the gait cycle. Conclusion: Medio-lateral foot center of pressure manipulation significantly affects neuromuscular pattern of hip and back musculature during gait in female hip bilateral osteoarthritis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号