首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Organelle exchange between cells via tunneling nanotubes (TNTs) is a recently described form of intercellular communication. Here, we show that the selective elimination of filopodia from PC12 cells by 350 nM cytochalasin B (CytoB) blocks TNT formation but has only a weak effect on the stability of existing TNTs. Under these conditions the intercellular organelle transfer was strongly reduced, whereas endocytosis and phagocytosis were not affected. Furthermore, the transfer of organelles significantly correlated with the presence of a TNT-bridge. Thus, our data support that in PC12 cells filopodia-like protrusions are the principal precursors of TNTs and CytoB provides a valuable tool to selectively interfere with TNT-mediated cell-to-cell communication.  相似文献   

2.
Recently, highly sensitive nanotubular structures mediating membrane continuity between mammalian cells have been discovered. With respect to their peculiar architecture, these membrane channels were termed tunneling nanotubes (TNTs). TNTs could form de novo between animal cells leading to the generation of complex cellular networks. They have been shown to facilitate the intercellular transfer of organelles as well as, on a limited scale, of membrane components and cytoplasmic molecules. It has been proposed that TNTs represent a novel and general biological principle of cell-to-cell communication and it becomes increasingly apparent that they fulfill important functions in the physiological processes of multicellular organisms.  相似文献   

3.
Ras GTPases were long thought to function exclusively from the plasma membrane (PM). However, a current model suggests that Ras proteins can compartmentalize to regulate different functions, and an oncogenic H-Ras mutant that is restricted to the endomembrane can still transform cells. In this study, we demonstrated that cells transformed by endomembrane-restricted oncogenic H-Ras formed tumors in nude mice. To define downstream targets of endomembrane Ras pathways, we analyzed Cdc42, which concentrates in the endomembrane and has been shown to act downstream of Ras in Schizosaccharomyces pombe. Our data show that cell transformation induced by endomembrane-restricted oncogenic H-Ras was blocked when Cdc42 activity was inhibited. Moreover, H-Ras formed a complex with Cdc42 on the endomembrane, and this interaction was enhanced when H-Ras was GTP bound or when cells were stimulated by growth factors. H-Ras binding evidently induced Cdc42 activation by recruiting and/or activating Cdc42 exchange factors. In contrast, when constitutively active H-Ras was restricted to the PM by fusing to a PM localization signal from the Rit GTPase, the resulting protein did not detectably activate Cdc42 although it activated Raf-1 and efficiently induced hallmarks of Ras-induced senescence in human BJ foreskin fibroblasts. Surprisingly, PM-restricted oncogenic Ras when expressed alone could only weakly transform NIH 3T3 cells; however, when constitutively active Cdc42 was coexpressed, together they transformed cells much more efficiently than either one alone. These data suggest that efficient cell transformation requires Ras proteins to interact with Cdc42 on the endomembrane and that in order for a given Ras protein to fully transform cells, multiple compartment-specific Ras pathways need to work cooperatively.  相似文献   

4.

Background

Tunneling nanotubes (TNTs) may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE) cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis.

Methodology and Principal Findings

Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 µm. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca2+ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells.

Conclusions and Significance

Our observations indicate that human RPE cell line ARPE-19 cells communicate by tunneling nanotubes and can support different types of intercellular traffic.  相似文献   

5.
The exposure of phosphatidylserine (PS) on the surface membrane of apoptotic cells triggers the recruitment of phagocytic receptors and subsequently results in uptake by phagocytes. Here we describe how apoptotic cells can use intercellular membrane nanotubes to transfer exposed PS to neighboring viable cells, and thus deposit an “eat‐me” tag on the viable cells. Tunneling nanotubes (TNTs) connected UV‐treated apoptotic rat pheochromocytoma PC12 cells with neighboring untreated cells. These TNTs were composed of PS‐exposed plasma membrane and facilitated the transfer of the membrane from apoptotic to viable cells. Other pro‐phagocytic signals, such as oxidized phospholipids and calreticulin, were also transferred to viable cells. In addition, anti‐phagocytic signal CD47 presenting on the plasma membrane of viable cells was masked by the transferred PS‐membrane. Confocal imaging revealed an increase of phagocytosis of viable PC12 cells by murine RAW264.7 macrophages when the viable PC12 cells were cocultured with UV‐treated PC12 cells. Treatment with 50 nM cytochalasin D would abolish TNTs and correspondingly inhibit this phagocytosis of the viable cells. Our study indicates that exposed‐PS membrane is delivered from apoptotic to viable cells through TNTs. This transferred membrane may act as a pro‐phagocytic signal for macrophages to induce phagocytosis of viable cells in a situation where they are in the vicinity of apoptotic cells. J. Cell. Physiol. 232: 2271–2279, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.  相似文献   

6.
Ras activation is critical for T-cell development and function, but the specific roles of the different Ras isoforms in T-lymphocyte function are poorly understood. We recently reported T-cell receptor (TCR) activation of ectopically expressed H-Ras on the the Golgi apparatus of T cells. Here we studied the isoform and subcellular compartment specificity of Ras signaling in Jurkat T cells. H-Ras was expressed at much lower levels than the other Ras isoforms in Jurkat and several other T-cell lines. Glutathione S-transferase-Ras-binding domain (RBD) pulldown assays revealed that, although high-grade TCR stimulation and phorbol ester activated both N-Ras and K-Ras, low-grade stimulation of the TCR resulted in specific activation of N-Ras. Surprisingly, whereas ectopically expressed H-Ras cocapped with the TCRs in lipid microdomains of the Jurkat plasma membrane, N-Ras did not. Live-cell imaging of Jurkat cells expressing green fluorescent protein-RBD, a fluorescent reporter of GTP-bound Ras, revealed that N-Ras activation occurs exclusively on the Golgi apparatus in a phospholipase Cgamma- and RasGRP1-dependent fashion. The specificity of N-Ras signaling downstream of low-grade TCR stimulation was dependent on the monoacylation of the hypervariable membrane targeting sequence. Our data show that, in contrast to fibroblasts stimulated with growth factors in which all three Ras isoforms become activated and signaling occurs at both the plasma membrane and Golgi apparatus, Golgi-associated N-Ras is the critical Ras isoform and intracellular pool for low-grade TCR signaling in Jurkat T cells.  相似文献   

7.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

8.
9.
There is increasing interest in endocytosis that occurs independently of clathrin coats and the fates of membrane proteins internalized by this mechanism. The appearance of clathrin-independent endocytic and membrane recycling pathways seems to vary with different cell types and cargo molecules. In this review we focus on studies that have been performed using HeLa and COS cells as model systems for understanding this membrane trafficking system. These endosomal membranes contain signaling molecules including H-Ras, Rac1, Arf6 and Rab proteins, and a lipid environment rich in cholesterol and PIP(2) providing a unique platform for cell signaling. Furthermore, activation of some of these signaling molecules (H-Ras, Rac and Arf6) can switch the constitutive form of clathrin-independent endocytosis into a stimulated one, associated with PM ruffling and macropinocytosis.  相似文献   

10.
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases caused by the misfolding of the cellular prion protein to an infectious form PrPSc. The intercellular transfer of PrPSc is a question of immediate interest as the cell-to-cell movement of the infectious particle causes the inexorable propagation of disease. We have previously identified tunneling nanotubes (TNTs) as one mechanism by which PrPSc can move between cells. Here we investigate further the details of this mechanism and show that PrPSc travels within TNTs in endolysosomal vesicles. Additionally we show that prion infection of CAD cells increases both the number of TNTs and intercellular transfer of membranous vesicles, thereby possibly playing an active role in its own intercellular transfer via TNTs.  相似文献   

11.
In T cells, glycolipid-enriched membrane (GEM) domains, or lipid rafts, are assembled into immune synapses in response to Ag presentation. However, the properties of T cell GEM domains in the absence of stimulatory signals, such as their size and distribution in the plasma membrane, are less clear. To address this question, we used confocal microscopy to measure GEM domains in unstimulated T cells expressing a GEM-targeted green fluorescent protein molecule. Our experiments showed that the GEM domains were assembled into membrane patches that were micrometers in size, as evidenced by a specific enrichment of GEM-associated molecules and resistance of the patches to extraction by Triton X-100. However, treatment of cells with latrunculin B disrupted the patching of the GEM domains and their resistance to Triton X-100. Similarly, the patches were coenriched with F-actin, and actin occurred in the detergent-resistant GEM fraction of T cells. Live-cell imaging showed that the patches were mobile and underwent translocation in the plasma membrane to immune synapses in stimulated T cells. Targeting of GEM domains to immune synapses was found to be actin-dependent, and required phosphatidylinositol 3-kinase activity and myosin motor proteins. We conclude from our results that T cell GEM domains are constitutively assembled by the actin cytoskeleton into micrometer-sized membrane patches, and that GEM domains and the GEM-enriched patches can function as a vehicle for targeting molecules to immune synapses.  相似文献   

12.
Alzheimer's disease (AD) pathology progresses gradually via anatomically connected brain regions. Direct transfer of amyloid-β142 oligomers (oAβ) between connected neurons has been shown, however, the mechanism is not fully revealed. We observed formation of oAβ induced tunneling nanotubes (TNTs)-like nanoscaled f-actin containing membrane conduits, in differentially differentiated SH-SY5Y neuronal models. Time-lapse images showed that oAβ propagate from one cell to another via TNT-like structures. Preceding the formation of TNT-like conduits, we detected oAβinduced plasma membrane (PM) damage and calcium-dependent repair through lysosomal-exocytosis, followed by massive endocytosis to re-establish the PM. Massive endocytosis was monitored by an influx of the membrane-staining dye TMA-DPH and PM damage was quantified by propidium iodide influx in the absence of Ca2+. The massive endocytosis eventually caused accumulation of internalized oAβ in Lamp1 positive multivesicular bodies/lysosomes via the actin cytoskeleton remodulating p21-activated kinase1 (PAK1) dependent endocytic pathway. Three-dimensional quantitative confocal imaging, structured illumination superresolution microscopy, and flowcytometry quantifications revealed that oAβ induces activation of phospho-PAK1, which modulates the formation of long stretched f-actin extensions between cells. Moreover, the formation of TNT-like conduits was inhibited by preventing PAK1-dependent internalization of oAβ using the small-molecule inhibitor IPA-3, a highly selective cell-permeable auto-regulatory inhibitor of PAK1. The present study reveals that the TNT-like conduits are probably instigated as a consequence of oAβ induced PM damage and repair process, followed by PAK1 dependent endocytosis and actin remodeling, probably to maintain cell surface expansion and/or membrane tension in equilibrium.  相似文献   

13.
Abstract

Cell-to-cell information exchange mediated by membrane protrusions in tunneling nanotubes (TNTs) has been widely described in distinct cell lines. Here, we describe a new form of direct intercellular communication in a murine macrophage-like cell line that is mediated by pseudopodial fusions that form over scraped plastic tissue culture surfaces along scratch lines. These structures are capable of forming intercellular, tunnel-like channels (inter-pseudopodial axis connections) that can be differentiated from TNTs based on length, thickness, tandem arrangement along an axis, pseudopodial origin and permanency. These channels were able to exchange membrane lipids and contain particles 0.5 μm or lesser in diameter between cells and might represent an additional biological function of pseudopodia.  相似文献   

14.
《Biophysical journal》2020,118(6):1248-1260
We earlier reported cytoplasmic fluorescence exchange between cultured human fibroblasts (Fibs) and malignant cells (MCs). Others report similar transfer via either tunneling nanotubes (TNTs) or shed membrane vesicles, and this changes the phenotype of recipient cells. Our time-lapse microscopy showed most exchange was from Fibs into MCs, with less in the reverse direction. Although TNTs were seen, we were surprised transfer was not via TNTs but was instead via fine and often branching cell projections that defied direct visual resolution because of their size and rapid movement. Their structure was revealed nonetheless by their organellar cargo and the grooves they formed indenting MCs, which was consistent with holotomography. Discrete, rapid, and highly localized transfer events evidenced against a role for shed vesicles. Transfer coincided with rapid retraction of the cell projections, suggesting a hydrodynamic mechanism. Increased hydrodynamic pressure in retracting cell projections normally returns cytoplasm to the cell body. We hypothesize “cell-projection pumping” (CPP), in which cytoplasm in retracting cell projections partially equilibrates into adjacent recipient cells via microfusions that form temporary intercellular cytoplasmic continuities. We tested plausibility for CPP by combined mathematical modeling, comparison of predictions from the model with experimental results, and then computer simulations based on experimental data. The mathematical model predicted preferential CPP into cells with lower cell stiffness, expected from equilibration of pressure toward least resistance. Predictions from the model were satisfied when Fibs were cocultured with MCs and fluorescence exchange was related to cell stiffness by atomic force microscopy. When transfer into 5000 simulated recipient MCs or Fibs was studied in computer simulations, inputting experimental cell stiffness and donor cell fluorescence values generated transfers to simulated recipient cells similar to those seen by experiment. We propose CPP as a potentially novel mechanism in mammalian intercellular cytoplasmic transfer and communication.  相似文献   

15.
A latent infection membrane protein (LMP) encoded by the Epstein-Barr virus (EBV) genome in latently infected, growth-transformed lymphocytes alters the phenotype of a human EBV-negative B-lymphoma cell line (Louckes) when introduced by gene transfer. These LMP-expressing cells exhibit increased homotypic adhesion due to increased expression of the adhesion molecules LFA-1 and ICAM-1. Increased homotypic adhesion could foster B-cell growth by facilitating autocrine growth factor effects. LFA-3 expression is also induced. The induction of LFA-3 and ICAM-1 results in increased heterotypic adhesion to T lymphocytes. This could result in more effective T-cell immune surveillance. Since LMP is expressed in EBV-transformed lymphocytes and has been demonstrated to transform rodent fibroblasts in vitro, a wide range of possible effects on B-lymphoma cell growth were assayed. In the Louckes B-lymphoma cell line, EBV LMP causes increased cell size, acid production, plasma membrane ruffling, and villous projections. Although cell proliferation rate was not greatly affected, the steady-state intracellular free calcium level, transforming growth factor beta responsiveness, and expression of the lymphocyte activation markers (CD23 and transferrin receptor) were increased. Thus, LMP appears to be a mediator of EBV effects on B-cell transformation. In transfected lymphoma cells, LMP localizes to patches at the cell periphery and associates with the cytoskeleton as it does in EBV-transformed B lymphocytes or in rodent fibroblasts. A partially deleted form of LMP (D1LMP) does not aggregate in patches or associate with the cytoskeleton and had little effect on B-cell growth. Thus, cytoskeletal association may be integral to LMP activity.  相似文献   

16.
《朊病毒》2013,7(2):125-135
Abstract

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases caused by the misfolding of the cellular prion protein to an infectious form PrPSc. The intercellular transfer of PrPSc is a question of immediate interest as the cell-to-cell movement of the infectious particle causes the inexorable propagation of disease. We have previously identified tunneling nanotubes (TNTs) as one mechanism by which PrPSc can move between cells. Here we investigate further the details of this mechanism and show that PrPSc travels within TNTs in endolysosomal vesicles. Additionally we show that prion infection of CAD cells increases both the number of TNTs and intercellular transfer of membranous vesicles, thereby possibly playing an active role in its own intercellular transfer via TNTs.  相似文献   

17.
Automated detection of tunneling nanotubes in 3D images.   总被引:2,自引:0,他引:2  
BACKGROUND: This paper presents an automated method for the identification of thin membrane tubes in 3D fluorescence images. These tubes, referred to as tunneling nanotubes (TNTs), are newly discovered intercellular structures that connect living cells through a membrane continuity. TNTs are 50-200 nm in diameter, crossing from one cell to another at their nearest distance. In microscopic images, they are seen as straight lines. It now emerges that the TNTs represent the underlying structure of a new type of cell-to-cell communication. METHODS: Our approach for the identification of TNTs is based on a combination of biological cell markers and known image processing techniques. Watershed segmentation and edge detectors are used to find cell borders, TNTs, and image artifacts. Mathematical morphology is employed at several stages of the processing chain. Two image channels are used for the calculations to improve classification of watershed regions into cells and background. One image channel displays cell borders and TNTs, the second is used for cell classification and displays the cytoplasmic compartments of the cells. The method for cell segmentation is 3D, and the TNT detection incorporates 3D information using various 2D projections. RESULTS: The TNT- and cell-detection were applied to numerous 3D stacks of images. A success rate of 67% was obtained compared with manual identification of the TNTs. The digitalized results were used to achieve statistical information of selected properties of TNTs. CONCLUSION: To further explore these structures, automated detection and quantification is desirable. Consequently, this automated recognition tool will be useful in biological studies on cell-to-cell communication where TNT quantification is essential.  相似文献   

18.
Tunneling nanotubes (TNTs) are F-actin-based membrane tubes that form between cells in culture and in tissues. They mediate intercellular communication ranging from electrical signalling to the transfer of organelles. Here, we studied the role of TNTs in the interaction between apoptotic and healthy cells. We found that pheochromocytoma (PC) 12 cells treated with ultraviolet light (UV) were rescued when cocultured with untreated PC12 cells. UV-treated cells formed a different type of TNT with untreated PC12 cells, which was characterized by continuous microtubule localized inside these TNTs. The dynamic behaviour of mCherry-tagged end-binding protein 3 and the accumulation of detyrosinated tubulin in these TNTs indicate that they are regulated structures. In addition, these TNTs show different biophysical properties, for example, increased diameter allowing dye entry, prolonged lifetime and decreased membrane fluidity. Further studies demonstrated that microtubule-containing TNTs were formed by stressed cells, which had lost cytochrome c but did not enter into the execution phase of apoptosis characterized by caspase-3 activation. Moreover, mitochondria colocalized with microtubules in TNTs and transited along these structures from healthy to stressed cells. Importantly, impaired formation of TNTs and untreated cells carrying defective mitochondria were unable to rescue UV-treated cells in the coculture. We conclude that TNT-mediated transfer of functional mitochondria reverse stressed cells in the early stages of apoptosis. This provides new insights into the survival mechanisms of damaged cells in a multicellular context.Apoptosis is an important regulatory mechanism of tissue homeostasis. It is triggered by the extrinsic pathway through the activation of proapoptotic receptors or by the intrinsic pathway through the destabilization of mitochondria in response to various forms of cell injury or stress.1 Notably, stressed cells are also strongly influenced by intercellular communicative networks. This includes diffusible growth factors, cytokines and other small molecules secreted from neighbouring cells, which can modulate the fate of distressed cells. For example, stem cells release growth factors to protect dysfunctional neurons in the brain.2 In tumour stroma, activated fibroblasts are thought to promote tumour progression by secreting growth factors that act in a paracrine manner.3 Moreover, contact-dependent signalling, for example, via adhesion molecules, can trigger contact inhibition or protection of endothelial cells.4 In addition, gap junctions have been shown to be involved in the transfer of death or survival molecules in different cell types.5 Therefore, the signals transferred from neighbouring cells influence the viability of target cells through different pathways.In 2004, our group described a previously unrecognized form of cell-to-cell interaction based on nanoscaled, F-actin-containing membrane tubes.6, 7 These tubes, referred to as membrane or tunneling nanotubes (TNTs), were subsequently found in numerous cell types in culture and in tissues.8, 9, 10, 11 Importantly, TNTs facilitate the intercellular exchange of diverse cellular signals and components ranging from electrical signalling to organelles.12, 13, 14, 15 Moreover, pathogens such as human immunodeficiency virus (HIV) and prions can spread between cells along TNTs.16, 17 Consistent with the model that TNTs are involved in cell-to-cell communication, apoptosis regulators may be transferred via TNTs between apoptotic and healthy cells to alter the fate of recipient cells. Indeed, it has been shown that TNTs can propagate the death signal Fas ligand between T lymphocytes to induce cell death.18, 19 TNTs have been also proposed to participate in the rescue of injured cardiomyoblasts or endothelial cells by mesenchymal stem cells (MSCs) through transferred mitochondria.20 ,21 However, the rescue mechanism by how and when this event was accomplished remains elusive.In this study, we found that PC12 cells stressed by ultraviolet (UV) radiation were rescued from apoptosis when cocultured with untreated, healthy PC12 cells. Single-cell analysis showed that stressed cells in the early stages of apoptosis form a new type of TNT to interact with untreated cells. These TNTs have a distinct cytoskeletal composition and biophysical properties when compared with TNTs interconnecting normal PC12 cells. We also observed the presence and transport of mitochondria in the TNTs formed by stressed cells. Notably, the rescue effect was inhibited when the formation of TNTs were impaired by incubating with an F-actin-depolymerizing drug, or when the mitochondria of rescuer cells were damaged. Our results suggest that the delivery of functional mitochondria via TNTs mediates the recovery of PC12 cells in the early stages of apoptosis.  相似文献   

19.
The adhesive function of integrins is regulated through cytoplasmic signaling. The present study was performed to investigate the relevance of cytoplasmic signaling and cytoskeletal assembly to integrin-mediated adhesion induced by chemokines. Adhesion of T cells induced by chemokines macrophage inflammatory protein (MIP)-1alpha and MIP-1beta was inhibited by pertussis toxin, wortmannin, and cytochalasin B, suggesting that both G protein-sensitive phosphatidylinositol (PI) 3-kinase activation and cytoskeletal assemblies are involved. The chemokine-induced T cell adhesion could be mimicked by expression of small G proteins, fully activated H-RasV12, or H-RasV12Y40C mutant, which selectively binds to PI 3-kinase, in T cells, inducing activated form of LFA-1alpha and LFA-1-dependent adhesion to ICAM-1. H-Ras expression also induced F-actin polymerization which colocalized with profilin in T cells. Adult T cell leukemia (ATL) cells spontaneously adhered to ICAM-1, which depended on endogenous MIP-1alpha and MIP-1beta through activation of G protein-sensitive PI 3-kinase. H-Ras signal pathway, leading to PI 3-kinase activation, also induced active configuration of LFA-1 and LFA-1-mediated adhesion of ATL cells, whereas expression of a dominant-negative H-Ras mutant failed to do. Profilin-dependent spontaneous polymerization of F-actin in ATL cells was reduced by PI 3-kinase inhibitors. In this paper we propose that H-Ras-mediated activation of PI 3-kinase can be involved in induction of LFA-1-dependent adhesion of T cells, which is relevant to chemokine-mediated signaling, and that profilin may form an important link between chemokine- and/or H-Ras-mediated signals and F-actin polymerization, which results in triggering of LFA-1 on T cells or leukemic T cells.  相似文献   

20.
Tunneling nanotubes (TNTs) have previosly been observed as long and thin transient structures forming between cells and intercellular protein transfer through them has been experimentally verified. It is hypothesized that this may be a physiologically important means of cell–cell communication. This paper attempts to give a simple model for the rates of transfer of molecules across these TNTs at different distances. We describe the transfer of both cytosolic and membrane bound molecules between neighboring populations of cells and argue how the lifetime of the TNT, the diffusion rate, distance between cells, and the size of the molecules may affect their transfer. The model described makes certain predictions and opens a number of questions to be explored experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号