首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Abstract: Effects of gamma radiation on the fifth instar codling moth, Cydia pomonella (L.), larvae were examined. Mature larvae were exposed to a series of gamma radiation doses ranging from 50 to 250 Gy and survival to pupae and adults was examined. The results showed that pupation and adult emergence decreased with increasing radiation dose. The results also showed that diapausing larvae were more sensitive to irradiation treatment than non-diapausing larvae, and females were more sensitive than males. A dose of 150 Gy reduced adult emergence to less than 2% in non-diapausing larvae, while a dose of 200 Gy completely prevented it. Furthermore, none of the emerging moths exposed to a dose of 150 Gy were females; at 100 Gy dose, the percentage of females was less than 14%. Irradiating larvae in apple fruit in a small-scale laboratory experiment produced similar results. Tests in which >100 000 larvae (in the fifth instar) were irradiated in an artificial rearing medium with a dose of 200 Gy resulted in no adult emergence. Similar results were also obtained when >32 000 larvae in the same stage were exposed in apple fruit to the same dose. The results indicate that the use of ionizing radiation as a quarantine treatment for codling moth infested fruits is feasible and requires a relatively low dose.  相似文献   

4.
Little is known about long-term cancer risks following in utero radiation exposure. We evaluated the association between in utero radiation exposure and risk of solid cancer and leukemia mortality among 8,000 offspring, born from 1948-1988, of female workers at the Mayak Nuclear Facility in Ozyorsk, Russia. Mother's cumulative gamma radiation uterine dose during pregnancy served as a surrogate for fetal dose. We used Poisson regression methods to estimate relative risks (RRs) and 95% confidence intervals (CIs) of solid cancer and leukemia mortality associated with in utero radiation exposure and to quantify excess relative risks (ERRs) as a function of dose. Using currently available dosimetry information, 3,226 (40%) offspring were exposed in utero (mean dose = 54.5 mGy). Based on 75 deaths from solid cancers (28 exposed) and 12 (6 exposed) deaths from leukemia, in utero exposure status was not significantly associated with solid cancer: RR = 0.94, 95% CI 0.58 to 1.49; ERR/Gy = -0.1 (95% CI < -0.1 to 4.1), or leukemia mortality; RR = 1.65, 95% CI 0.52 to 5.27; ERR/Gy = -0.8 (95% CI < -0.8 to 46.9). These initial results provide no evidence that low-dose gamma in utero radiation exposure increases solid cancer or leukemia mortality risk, but the data are not inconsistent with such an increase. As the offspring cohort is relatively young, subsequent analyses based on larger case numbers are expected to provide more precise estimates of adult cancer mortality risk following in utero exposure to ionizing radiation.  相似文献   

5.
A G Savinov 《Radiobiologiia》1986,26(4):482-487
Opposite changes occur in the intensity of UV-fluorescence (UVF) in irradiated (0.1 Gy and 5.0 Gy) HeLa cells. The radiometric study has demonstrated that there is a correlation between the number of tryptophan-containing proteins and UVF intensity in nonirradiated and irradiated (5.0 Gy) cells during culture growth. Such a correlation was absent in cells exposed to 0.1 Gy radiation. Low radiation doses (0.1 Gy) have maximum action on cytoplasm membrane fluorescence. Low-level radiation changes the intensity of the ANS probe fluorescence connected with cell membranes, and the intensity of the cell protein UVF. High radiation doses increase and low doses decrease the probe fluorescence.  相似文献   

6.
To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.  相似文献   

7.
8.
9.
Male rats were exposed to fractionated 0.1 Gy radiation in early onthogenesis (1 month). Essential changes in reproductive system and liver were found. First generation offspring of the exposed males and females showed moderate radiation changes more expressed in immature rats.  相似文献   

10.
11.
There are various types of radiation in space including high energy particles. It is, therefore, becoming to be important to study the low dose and low dose-rate effects in space radiation biology. Radiation adaptive response (RAR) for cell growth and its mechanism were examined using cultured glial cells. The cells from hippocampus of Wistar rats were irradiated with a low dose (0.1 Gy) of X-rays and 3 h after with a high dose (2 Gy). Decrease in the rate of cell growth with 2 Gy was suppressed by the 0.1 Gy preirradiation, when cells were counted 2 days after irradiation. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNAPK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The treatment with the activators of PKC instead of 0.1 Gy-preirradiation also caused adaptive response to 2 Gy-irradiation. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice, which have lost DNAPK activity, and AT-2KY cells, fibroblasts of an ataxia-telangiectasia (AT) patient, showed no RAR. These results indicated that PKC, ATtM, DNAPK and/or PI3K were involved in RAR for growth of cultured glial cells. Proteomics [correction of preteomics] analysis of these cells exposed to low dose irradiation in now underway.  相似文献   

12.
To date, there is scant information on in vivo induction of chromosomal damage by heavy ions found in space (i.e. 56Fe ions). For radiation-induced response to be useful for risk assessment, it must be established in in vivo systems especially in cells that are known to be at risk for health problems associated with radiation exposure (such as hematopoietic cells, the known target tissue for radiation-induced leukemia). In this study, the whole genome multicolor fluorescence in situ hybridization (mFISH) technique was used to examine the in vivo induction of chromosomal damage in hematopoietic tissues, i.e. bone marrow cells. These cells were collected from CBA/CaJ mice at day 7 following whole-body exposure to different doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy) or 137Cs γ rays as the reference radiation (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min using a GammaCell40). These radiation doses were the average total-body doses. For each radiation type, there were four mice per dose. Several types of aberrations in bone marrow cells collected from mice exposed to either type of radiation were found. These were exchanges and breaks (both chromatid- and chromosome-types). Chromosomal exchanges included translocations (Robertsonian or centric fusion, reciprocal and incomplete types), and dicentrics. No evidence of a non-random involvement of specific chromosomes in any type of aberrations observed in mice exposed to 56Fe ions or 137Cs γ rays was found. At the radiation dose range used in our in vivo study, the majority of exchanges were simple. Complex exchanges were detected in bone marrow cells collected from mice exposed to 1 Gy of 56Fe ions or 3 Gy of 137Cs γ rays only, but their frequencies were low. Overall, our in vivo data indicate that the frequency of complex chromosome exchanges was not significantly different between bone marrow cells collected from mice exposed to 56Fe ions or 137Cs γ rays. Each type of radiation induced significant dose-dependent increases (ANOVA, P < 0.01) in the frequencies of chromosomal damage, including the numbers of abnormal cells. Based upon the linear-terms of dose-response curves, 56Fe ions were 1.6 (all types of exchanges), 4.3 (abnormal cells) and 4.2 (breaks, both chromatid- and chromosome-types) times more effective than 137Cs γ rays in inducing chromosomal damage.  相似文献   

13.
Mice exposed to gamma-quanta during 47 and 82 days at a dose-rate of 1.3 mGy/h and cumulative doses of 1.45 and 2.54 Gy, respectively, were subsequently subjected to a single acute irradiation with a dose of 20 Gy. Repair of DNA damages induced by the acute exposure was shown to proceed in the brain, pulmonary and splenic tissues of chronically exposed mice more readily than in the tissues of mice not subjected to chronic irradiation. The data obtained indicate that the induced adaptive response activates DNA repair in tissues of mice exposed to long-term low-level radiation.  相似文献   

14.
Recent evidence argues against a high threshold dose for vision-impairing radiation-induced cataractogenesis. We conducted logistic regression analysis to estimate the dose response and used a likelihood profile procedure to determine the best-fitting threshold model among 3761 A-bomb survivors who underwent medical examinations during 2000-2002 for whom radiation dose estimates were available, including 479 postoperative cataract cases. The analyses indicated a statistically significant dose-response increase in the prevalence of postoperative cataracts [odds ratio (OR), 1.39; 95% confidence interval (CI), 1.24-1.55] at 1 Gy, with no indication of upward curvature in the dose response. The dose response was suggestive when the restricted dose range of 0 to 1 Gy was examined. A nonsignificant dose threshold of 0.1 Gy (95% CI, <0-0.8) was found. The prevalence of postoperative cataracts in A-bomb survivors increased significantly with A-bomb radiation dose. The estimate (0.1 Gy) and upper bound (0.8 Gy) of the dose threshold for operative cataract prevalence was much lower than the threshold of 2-5 Gy usually assumed by the radiation protection community and was statistically compatible with no threshold at all.  相似文献   

15.
Preirradiation of mouse recipients with a dose of 1-2 Gy 24 and 48 h before lethal irradiation (8 Gy) made CFUs content of femur increase upon transplantation of bone marrow from exposed and intact donors. The same was with the long-term bone marrow culture: preirradiation of a stromal sublayer increased the number of CFUs in the transplanted bone marrow preirradiated with 6 Gy radiation. Retransplantation of bone marrow to irradiated donors after 5 day cultivation, a sublayer being activated, increased the number of CFUs in the femur in comparison with donors which were injected with the bone marrow from the culture without activation of the sublayer by low-level radiation.  相似文献   

16.
Although no statistically significant hereditary effects have yet been detected in the children of survivors from the atomic bombings in Hiroshima and Nagasaki, recent animal studies have found that exposure to ionizing radiation can cause genomic and epigenomic instability in the exposed individuals, as well as their offspring, and therefore, may have much larger genetic effects than predicted by earlier studies. When individuals are exposed to various environmental insults, including radiation, individual sensitivity to the insults often varies. Variance in germ-line response to radiation among individuals has been widely recognized, but it is difficult to address due to the use of inbred strains and the limited number of offspring that can be produced by a pair of mice, the common model used to study genetic effects of radiation. Herein is the first study to examine individual family responses to ionizing radiation using a parent-pedigree approach in an outbred strain of a vertebrate model, the Japanese medaka fish. Changes in frequencies of radiation-induced germline mutations at nine microsatellite loci were examined in the same families before and after exposure to one of four acute doses of ionizing radiation (0.1, 0.5, 2.5, 5Gy, plus sham-exposed controls). Families varied significantly in pre-exposure mutation frequencies and responses to irradiation, but germline mutations were elevated in at least one family after 0.1, 0.5, and 5Gy exposures. Variance among individuals in sensitivity to radiation is well documented for many endpoints, and our work now extends these endpoints to include germ-line mutations. Further studies are needed to elucidate dose response, effects at varying stages of spermatogenesis, and the mechanisms underlying the variance in these individual responses to radiation.  相似文献   

17.
The influence of ionizing radiation with low absorbed dose rate (55 mGy x min(-1)) in 1, 12 and 24 hours after irradiation in doses of 0.1; 0.5 and 1.0 Gy on functional state of the electron transfer chain of the rat small intestine mitochondria was investigated by assessment of the oxygen consumption rate. The uncoupling of oxidation and phosphorylation, a decrease of phosphorylation rate and inhibition of ATP hydrolysis reactions were established in mitochondria in dependence on the irradiation dose and time interval after irradiation. The functional peculiarities of the oxidation-phosphorylation coupling sites of the mitochondrial electron transfer chain were detected.  相似文献   

18.
Exposure to ionizing radiation has been thought to induce ovarian failure and premature menopause. Proximally exposed female atomic bomb survivors were reported to experience menopause immediately after the exposure more often than those who were distally exposed. However, it remains unclear whether such effects were caused by physical injury and psychological trauma or by direct effects of radiation on the ovaries. The objective of this study was to see if there are any late health effects associated with the exposure to atomic bomb radiation in terms of age at menopause in a cohort of 21,259 Life Span Study female A-bomb survivors. Excess absolute rates (EAR) of natural and artificial menopause were estimated using Poisson regression. A linear threshold model with a knot at 0.40 Gy [95% confidence interval (CI): 0.13, 0.62] was the best fit for a dose response of natural menopause (EAR at 1 Gy at age of 50 years = 19.4/1,000 person-years, 95% CI: 10.4, 30.8) and a linear threshold model with a knot at 0.22 Gy (95% CI: 0.14, 0.34) was the best fit for artificial menopause (EAR at 1 Gy at age of 50 years for females who were exposed at age of 20 years = 14.5/1,000 person-years, 95% CI: 10.2, 20.1). Effect modification by attained age indicated that EARs peaked around 50 years of age for both natural and artificial menopause. Although effect modification by age at exposure was not significant for natural menopause, the EAR for artificial menopause tended to be larger in females exposed at young ages. On the cumulative incidence curve of natural menopause, the median age at menopause was 0.3 years younger in females exposed to radiation of 1 Gy compared with unexposed females. The median age was 1 year younger for combined natural and artificial menopause in the same comparison. In conclusion, age at menopause was thought to decrease with increasing radiation dose for both natural and artificial menopause occurring at least 5 years after the exposure.  相似文献   

19.
The paper summarizes the results of studies of 85 individuals exposed in the Southern Ural region. The spontaneous frequency of the cells with micronuclei (MN) in a population of human blood lymphocytes after PHA stimulation and cytokinetic block with cytochalasin B has been determined. The sensitivity of lymphocytes to the irradiation at the dose of 1.0 Gy and the adaptive response (AR) after the irradiation at the low adaptive dose of 0.05 Gy, and the challenge dose of 1.0 Gy 5 h later have been studied too. It was shown that the peculiarity of the Urals population consists in a higher individual variability of the frequency of cells with MN in all groups have been investigated (spontaneous, after acute irradiation in the dose 1.0 Gy) in comparison with Moscow people. The proportion of persons with a significant AR in the Urals groups was considerably lower than that identified among Moscow residents, and the number of persons with enhanced radiosensitivity increased following low-dose irradiation. We can suppose that prolonged action of low level radiation with another ecological factors, living in the contaminated regions result in the enhancement of the sensitivity to the genotoxic agents in the separate individuals.  相似文献   

20.
The single exposition of 3- and 4-week mice in a dose 0.1 Gy resulted in depressing primary T-dependent humoral immune response. Unlike juvenile ones at adult 16-week animals the stimulation antibody-formation took place. As a result of the administration of immunomodulating drugs, thymogene and nucleinate of a sodium in irradiation mice of 3-week age was an augmentation of the number of antibody-producing cells relatively in 2 and 4 times. At the same time at irradiated in dose 0.1 Gy of adult mice thymogene abrogated the stimulating effect of radiation. It is suggested that the probable cause of the immunosuppressing effect of a small dose of radiation can be an inactivation of a radiosensitive subpopulation of helper cells or selective stimulation of the functional activity of neonatal suppressor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号