首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
West Nile virus (WNV) is a blood-borne pathogen that causes systemic infections and serious neurological disease in human and animals. The most common route of infection is mosquito bites and therefore, the virus must cross a number of polarized cell layers to gain access to organ tissue and the central nervous system. Resistance to trans-cellular movement of macromolecules between epithelial and endothelial cells is mediated by tight junction complexes. While a number of recent studies have documented that WNV infection negatively impacts the barrier function of tight junctions, the intracellular mechanism by which this occurs is poorly understood. In the present study, we report that endocytosis of a subset of tight junction membrane proteins including claudin-1 and JAM-1 occurs in WNV infected epithelial and endothelial cells. This process, which ultimately results in lysosomal degradation of the proteins, is dependent on the GTPase dynamin and microtubule-based transport. Finally, infection of polarized cells with the related flavivirus, Dengue virus-2, did not result in significant loss of tight junction membrane proteins. These results suggest that neurotropic flaviviruses such as WNV modulate the host cell environment differently than hemorrhagic flaviviruses and thus may have implications for understanding the molecular basis for neuroinvasion.  相似文献   

2.
Endothelial cells of the blood-brain barrier form complex tight junctions, which are more frequently associated with the protoplasmic (P-face) than with the exocytoplasmic (E-face) membrane leaflet. The association of tight junctional particles with either membrane leaflet is a result of the expression of various claudins, which are transmembrane constituents of tight junction strands. Mammalian brain endothelial tight junctions exhibit an almost balanced distribution of particles and lose this morphology and barrier function in vitro. Since it was shown that the brain endothelial tight junctions of submammalian species form P-face-associated tight junctions of the epithelial type, the question of which molecular composition underlies the morphological differences and how do these brain endothelial cells behave in vitro arose. Therefore, rat and chicken brain endothelial cells were investigated for the expression of junctional proteins in vivo and in vitro and for the morphology of the tight junctions. In order to visualize morphological differences, the complexity and the P-face association of tight junctions were quantified. Rat and chicken brain endothelial cells form tight junctions which are positive for claudin-1, claudin-5, occludin and ZO-1. In agreement with the higher P-face association of tight junctions in vivo, chicken brain endothelia exhibited a slightly stronger labeling for claudin-1 at membrane contacts. Brain endothelial cells of both species showed a significant alteration of tight junctions in vitro, indicating a loss of barrier function. Rat endothelial cells showed a characteristic switch of tight junction particles from the P-face to the E-face, accompanied by the loss of claudin-1 in immunofluorescence labeling. In contrast, chicken brain endothelial cells did not show such a switch of particles, although they also lost claudin-1 in culture. These results demonstrate that the maintenance of rat and chicken endothelial barrier function depends on the brain microenvironment. Interestingly, the alteration of tight junctions is different in rat and chicken. This implies that the rat and chicken brain endothelial tight junctions are regulated differently.  相似文献   

3.
Tight junctions create a paracellular permeability barrier that is breached when nonsteroidal anti-inflammatory drugs cause gastrointestinal injury, including increased gastrointestinal permeability. However, the mechanism by which aspirin affects the function of gastric epithelial tight junctions is unknown. Thus, we examined the effect of aspirin on gastric mucosal barrier properties and tight junction organization using MKN28, a human gastric epithelial cell line that expresses claudin-3, claudin-4, claudin-7, zonula occludens (ZO)-1, and occludin, but not claudin-2 or claudin-5, as determined by immunoblot analysis and immunofluorescent staining. Aspirin (5 mM) treatment of MKN28 gastric epithelial monolayers significantly decreased transepithelial electrical resistance and increased dextran permeability. Both aspirin-mediated permeability and phosphorylation of p38 MAPK were significantly attenuated by SB-203580 (a p38 MAPK inhibitor) but not by U-0126 (a MEK1 inhibitor) or SP-600125 (a JNK inhibitor). Aspirin significantly decreased the quantity of claudin-7 protein produced by MKN28 cells but not the quantity of claudin-3, claudin-4, ZO-1, or occludin. The aspirin-induced decrease in claudin-7 protein was completely abolished by SB-203580 pretreatment. These results demonstrate, for the first time, that claudin-7 protein is important in aspirin-induced gastric barrier loss and that p38 MAPK activity mediates this epithelial barrier dysfunction. tight junction; p38 mitogen-activated protein kinase; permeability  相似文献   

4.
Tight junctions composed of transmembrane proteins, including claudin, occludin, and tricellulin, and peripheral membrane proteins are a major barrier to endothelial permeability, whereas the role of claudin in the regulation of tight junction permeability in nonneural endothelial cells is unclear. This study demonstrates that claudin-1 is dominantly expressed and depletion of claudin-1 using small interfering RNA (siRNA) increased tight junction permeability in EA hy.926 cells, indicating that claudin-1 is a crucial regulator of endothelial tight junction permeability. The ubiquitin-proteasome system has been implicated in the regulation of endocytotic trafficking of plasma membrane proteins. Therefore, the involvement of proteasomes in the localization of claudin-1 was investigated by pharmacological and genetic inhibition of proteasomes using a proteasome inhibitor, N-acetyl-Leu-Leu-Nle-CHO, and siRNA against the β?-subunit of the 20S proteasome, respectively. Claudin-1 was localized at cell-cell contact sites in control cells. Claudin-1 was localized in the cytoplasm in association with Rab5a and EEA-1, a marker of early endosome, following inhibition of proteasomes. Depletion of Rab5a using siRNA reversed the localization of claudin-1 induced by inhibition of proteasomes. These data suggest that proteasomes regulate claudin-1 localization at the plasma membrane, which changes upon proteasomal inhibition to a Rab5a-mediated endosomal localization.  相似文献   

5.
Tight junctions mediate the intercellular diffusion barrier found in epithelial tissues but they are not static complexes; instead there is rapid movement of individual proteins within the junctions. In addition some tight junction proteins are continuously being endocytosed and recycled back to the plasma membrane. Understanding the dynamic behaviour of tight junctions is important as they are altered in a range of pathological conditions including cancer and inflammatory bowel disease. In this study we investigate the effect of treating epithelial cells with a small molecule inhibitor (YM201636) of the lipid kinase PIKfyve, a protein which is involved in endocytic trafficking. We show that MDCK cells treated with YM201636 accumulate the tight junction protein claudin-1 intracellularly. In contrast YM201636 did not alter the localization of other junction proteins including ZO-1, occludin and E-cadherin. A biochemical trafficking assay was used to show that YM201636 inhibited the endocytic recycling of claudin-1, providing an explanation for the intracellular accumulation. Claudin-2 was also found to constantly recycle in confluent MDCK cells and treatment with YM201636 blocked this recycling and caused accumulation of intracellular claudin-2. However, claudin-4 showed negligible endocytosis and no detectable intracellular accumulation occurred following treatment with YM201636, suggesting that not all claudins show the same rate of endocytic trafficking. Finally, we show that, consistent with the defects in claudin trafficking, incubation with YM201636 delayed formation of the epithelial permeability barrier. Therefore, YM201636 treatment blocks the continuous recycling of claudin-1/claudin-2 and delays epithelial barrier formation.  相似文献   

6.
The dysfunction of alveolar barriers is a critical factor in the development of lung injury and subsequent fibrosis, but the underlying molecular mechanisms remain poorly understood. To clarify the pathogenic roles of tight junctions in lung injury and fibrosis, we examined the altered expression of claudins, the major components of tight junctions, in the lungs of disease models with pulmonary fibrosis. Among the 24 known claudins, claudin-1, claudin-3, claudin-4, claudin-7, and claudin-10 were identified as components of airway tight junctions. Claudin-5 and claudin-18 were identified as components of alveolar tight junctions and were expressed in endothelial and alveolar epithelial cells, respectively. In experimental bleomycin-induced lung injury, the levels of mRNA encoding tight junction proteins were reduced, particularly those of claudin-18. The integrity of the epithelial tight junctions was disturbed in the fibrotic lesions 14 days after the intraperitoneal instillation of bleomycin. These results suggest that bleomycin mainly injured alveolar epithelial cells and impaired alveolar barrier function. In addition, we analyzed the influence of transforming growth factor-β (TGF-β), a critical mediator of pulmonary fibrosis that is upregulated after bleomycin-induced lung injury, on tight junctions in vitro. The addition of TGF-β decreased the expression of claudin-5 in human umbilical vein endothelial cells and disrupted the tight junctions of epithelial cells (A549). These results suggest that bleomycin-induced lung injury causes pathogenic alterations in tight junctions and that such alterations seem to be induced by TGF-β.  相似文献   

7.
Tight junctions are multiprotein complexes that form the fundamental physiologic and anatomic barrier between epithelial and endothelial cells, yet little information is available about their molecular organization. To begin to understand how the transmembrane proteins of the tight junction are organized into multiprotein complexes, we used blue native-PAGE (BN-PAGE) and cross-linking techniques to identify complexes extracted from MDCK II cells and mouse liver. In nonionic detergent extracts from MDCK II cells, the tight junction integral membrane protein claudin-2 was preferentially isolated as a homodimer, whereas claudin-4 was monomeric. Analysis of the interactions between chimeras of claudin-2 and -4 are consistent with the transmembrane domains of claudin-2 being responsible for dimerization, and mutational analysis followed by cross-linking indicated that the second transmembrane domains were arranged in close proximity in homodimers. BN-PAGE of mouse liver membrane identified a relatively discrete high molecular weight complex containing at least claudin-1, claudin-2, and occludin; the difference in the protein complex sizes between cultured cells and tissues may reflect differences in tight junction protein or lipid composition or post-translational modifications. Our results suggest that BN-PAGE may be a useful tool in understanding tight junction structure.  相似文献   

8.
Rotaviruses infect epithelial cells of the small intestine, but the pathophysiology of the resulting severe diarrhea is incompletely understood. Histological damage to intestinal epithelium is not a consistent feature, and in vitro studies showed that intestinal cells did not undergo rapid death and lysis during viral replication. We show that rotavirus infection of Caco-2 cells caused disruption of tight junctions and loss of transepithelial resistance (TER) in the absence of cell death. TER declined from 300 to 22 Omega. cm(2) between 8 and 24 h after infection and was accompanied by increased transepithelial permeability to macromolecules of 478 and 4,000 Da. Distribution of tight junction proteins claudin-1, occludin, and ZO-1 was significantly altered during infection. Claudin-1 redistribution was notably apparent at the onset of the decline in TER. Infection was associated with increased production of lactate, decreased mitochondrial oxygen consumption, and reduced cellular ATP (60% of control at 24 h after infection), conditions known to reduce the integrity of epithelial tight junctions. In conclusion, these data show that rotavirus infection of Caco-2 intestinal cells altered tight junction structure and function, which may be a response to metabolic dysfunction.  相似文献   

9.
Gap junctions are considered to play a crucial role in differentiation of epithelial cells and to be associated with tight junction proteins. In this study, to investigate the role of gap junctions in regulation of the barrier function and fence function on the tight junctions, we introduced the Cx26 gene into human airway epithelial cell line Clau-3 and used a disruption model of tight junctions employing the Na(+)/K(+)-ATPase inhibitor ouabain. In parental Calu-3 cells, gap junction proteins Cx32 and Cx43, but not Cx26, and tight junction proteins occludin, JAM-1, ZO-1, claudin-1, -2, -3, -4, -5, -6, -7, -8, -9, and -14 were detected by RT-PCR. The barrier function and fence function of tight junctions were well maintained, whereas the GJIC was low level. Treatment with ouabain caused disruption of the barrier function and fence function of tight junctions together with down-regulation of occludin, JAM-1, claudin-2, and -4 and up-regulation of ZO-1 and claudin-14. In Cx26 transfectants, Cx26 protein was detected by Western blotting and immunocytochemistry, and many gap junction plaques were observed with well-developed tight junction strands. Expression of claudin-14 was significantly increased in Cx26 transfectants compared to parental cells, and in some cells, Cx26 was co-localized with claudin-14. Interestingly, transfection with Cx26 prevented disruption of both functions of tight junctions by treatment with ouabain without changes in the tight junction proteins. Pretreatment with the GJIC blockers 18beta-glycyrrhetinic acid and oleamide did not affect the changes induced by Cx26 transfection. These results suggest that Cx26 expression, but not the mediated intercellular communication, may regulate tight junction barrier and fence functions in human airway epithelial cell line Calu-3.  相似文献   

10.
The blood-brain barrier (BBB), which protects the CNS from pathogens, is composed of specialized brain microvascular endothelial cells (BMECs) joined by tight junctions and ensheathed by pericytes and astrocyte endfeet. The stability of the BBB structure and function is of great significance for the maintenance of brain homeostasis. When a neurotropic virus invades the CNS via a hematogenous or non-hematogenous route, it may cause structural and functional disorders of the BBB, and also activate the BBB anti-inflammatory or pro-inflammatory innate immune response. This article focuses on the structural and functional changes that occur in the three main components of the BBB (endothelial cells, astrocytes, and pericytes) in response to infection with neurotropic viruses transmitted by hematogenous routes, and also briefly describes the supportive effect of three cells on the BBB under normal physiological conditions. For example, all three types of cells express several PRRs, which can quickly sense the virus and make corresponding immune responses. The pro-inflammatory immune response will exacerbate the destruction of the BBB, while the anti-inflammatory immune response, based on type I IFN, consolidates the stability of the BBB. Exploring the details of the interaction between the host and the pathogen at the BBB during neurotropic virus infection will help to propose new treatments for viral encephalitis. Enhancing the defense function of the BBB, maintaining the integrity of the BBB, and suppressing the pro-inflammatory immune response of the BBB provide more ideas for limiting the neuroinvasion of neurotropic viruses. In the future, these new treatments are expected to cooperate with traditional antiviral methods to improve the therapeutic effect of viral encephalitis.  相似文献   

11.
The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.  相似文献   

12.
Tight junctions form the major paracellular barrier in epithelial tissues. Barrier-sealing properties are quite variable among cell types in terms of electrical resistance, solute and water flux, and charge selectivity. A molecular explanation for this variability appears closer following identification of the transmembrane proteins occludin and members of the claudin multigene family. For example, the human phenotype of mutations in claudin-16 suggests that it creates a channel that allows magnesium to diffuse through renal tight junctions. Similarly, a mouse knockout of claudin-11 reveals its role in formation of tight junctions in myelin and between Sertoli cells in testis. The study of other claudins is expected to elucidate their contributions to creating junction structure and physiology in all epithelial tissues.  相似文献   

13.
In salivary glands, primary saliva is produced by acini and is modified by the reabsorption and secretion of ions in the ducts. Thus, the permeability of intercellular junctions in the ducts is considered to be lower than in the acini. We have examined the relationship between the expressed claudin isotypes and the barrier functions of tight junctions in a submandibular gland epithelial cell line, SMIE. SMIE cells were originally derived from rat submandibular duct cells, but their barrier functions are not as efficient as those of Madin-Darby canine kidney cells. Large molecules, such as 70-kDa dextran, diffuse across the monolayers, although E-cadherin and occludin, adherens junction and tight junction proteins, respectively, are expressed in SMIE cells. Claudin-3 protein has also been detected, but the expression level of claudin-3 mRNA is much lower than in the original submandibular glands. Other claudins including claudin-4 (originally expressed in the duct cells) have not been detected. Because of the limited expression of claudins, SMIE cells are suitable for studying the role(s) of claudins. To examine the function of claudin-4 in submandibular glands, we have overexpressed green fluorescence protein (GFP)-fused claudin-4 in SMIE cells. Cells that express GFP-fused claudin-4 have a higher transepithelial electrical resistance and a lower permeability of 70-kDa dextran, although the expression levels of occludin and claudin-3 are hardly affected. Therefore, claudin-4 plays a role in the regulation of the barrier function of tight junctions in submandibular glands. This work was supported by Grants-in-Aid for scientific research from the Ministry of Education, Science, Culture, Sports, and Technology of Japan (16591868), by a Nihon University Multidisciplinary Research Grant for 2006 and 2007, and by a Grant-in-Aid for a 2003 Multidisciplinary Research Project from MEXT.  相似文献   

14.
The epithelium of upper respiratory tissues such as nasal mucosa forms a continuous barrier to a wide variety of exogenous antigens. The epithelial barrier function is regulated in large part by the intercellular junctions, referred to as gap and tight junctions. However, changes of gap and tight junctions during differentiation of human nasal epithelial (HNE) cells are still unclear. In the present study, to investigate changes of gap and tight junctions during differentiation of HNE cells in vitro, we used primary human HNE cells cocultured with primary human nasal fibroblast (HNF) cells in a noncontact system. In HNE cells cocultured with HNF cells for 2 weeks, numerous elongated cilia-like structures were observed compared to those without HNF cells. In the coculture, downregulation of Cx26 and upregulation of Cx30.3 and Cx31 were observed together with extensive gap junctional intercellular communication. Furthermore, expression of the tight junction proteins claudin-1, claudin-4, occludin and ZO-2 was increased. These results suggest that switching in expression of connexins and induction of tight junction proteins may be closely associated with differentiation of HNE cells in vitro and that differentiation of HNE cells requires unknown soluble factors secreted from HNF cells.  相似文献   

15.
Claudin-5 is a transmembrane protein reported to be primarily present in tight junctions of endothelia. Unexpectedly, we found expression of claudin-5 in HT-29/B6 cells, an epithelial cell line derived from human colon. Confocal microscopy showed colocalization of claudin-5 with occludin, indicating its presence in the tight junctions. By contrast, claudin-5 was absent in the human colonic cell line Caco-2 and in Madin-Darby canine kidney cells (MDCK sub-clones C7 and C11), an epithelial cell line derived from the collecting duct. To determine the contribution of claudin-5 to tight junctional permeability in cells of human origin, stable transfection of Caco-2 with FLAG-claudin-5 cDNA was performed. In addition, clone MDCK-C7 was transfected. Synthesis of the exogenous FLAG-claudin-5 was verified by Western blot analysis and confocal fluorescent imaging by employing FLAG-specific antibody. FLAG-claudin-5 was detected in transfected cells in colocalization with occludin, whereas cells transfected with the vector alone did not exhibit specific signals. Resistance measurements and mannitol fluxes after stable transfection with claudin-5 cDNA revealed a marked increase of barrier function in cells of low genuine transepithelial resistance (Caco-2). By contrast, no changes of barrier properties were detected in cells with a high transepithelial resistance (MDCK-C7) after stable transfection with claudin-5 cDNA. We conclude that claudin-5 is present in epithelial cells of colonic origin and that it contributes to some extent to the paracellular seal. Claudin-5 may thus be classified as a tight-junctional protein capable of contributing to the "sealing" of the tight junction.  相似文献   

16.
Claudins are transmembrane proteins of the tight junction that determine and regulate paracellular ion permeability. We previously reported that claudin-8 reduces paracellular cation permeability when expressed in low-resistance Madin-Darby canine kidney (MDCK) II cells. Here, we address how the interaction of heterologously expressed claudin-8 with endogenous claudin isoforms impacts epithelial barrier properties. In MDCK II cells, barrier improvement by claudin-8 is accompanied by a reduction of endogenous claudin-2 protein at the tight junction. Here, we show that this is not because of relocalization of claudin-2 into the cytosolic pool but primarily due to a decrease in gene expression. Claudin-8 also affects the trafficking of claudin-2, which was displaced specifically from the junctions at which claudin-8 was inserted. To test whether replacement of cation-permeable claudin-2 mediates the effect of claudin-8 on the electrophysiological phenotype of the host cell line, we expressed claudin-8 in high-resistance MDCK I cells, which lack endogenous claudin-2. Unlike in MDCK II cells, induction of claudin-8 in MDCK I cells (which did not affect levels of endogenous claudins) did not alter paracellular ion permeability. Furthermore, when endogenous claudin-2 in MDCK II cells was downregulated by epidermal growth factor to create a cell model with low transepithelial resistance and low levels of claudin-2, the permeability effects of claudin-8 were also abolished. Our findings demonstrate that claudin overexpression studies measure the combined effect of alterations in both endogenous and exogenous claudins, thus explaining the dependence of the phenotype on the host cell line.  相似文献   

17.
18.
The distributions of occludin and claudin-1, two tight junction–associated integral membrane proteins were investigated by immunohistochemical analysis of whole-mount preparations of the blood vessels in the myelinated streak of the rabbit retina. Light microscopy revealed that occludin and claudin-1 immunoreactivities were abundant along the interface of adjacent endothelial cells of all blood vessels. Electron microscopy revealed that both proteins were distributed in a regular pattern (at regular intervals of approximately 80 nm) along the length of tight junctions, probably in the regions of tight junction strands. No other structures or cell types expressed either of these two proteins in the myelinated streak. Whereas occludin immunoreactivity was concentrated only at the tight junction interface, claudin-1 immunoreactivity also extended into the cytoplasm of the endothelial cells, suggesting a different structural role for claudin-1 than for occludin at tight junctions. Retinal pigment epithelial cells expressed occludin around their entire circumference, consistent with the function of these cells as a barrier separating the retina from the leaky vessels of the choroid. Also consistent with the association of occludin expression with vessels that exhibit functional tight junctions, this protein was expressed at only a low level in, and showed an irregular distribution along, the vessels of the choroid, a vascular bed that lacks blood-barrier properties. Further, the distribution of occludin was examined during formation and remodelling of the rat retinal vasculature. Occludin expression was evident at the leading edge of vessel formation and was found on all vessels in both the inner and outer vascular plexus. Numerous vascular segments at the early stage of vascular formation and regression lost occludin expression. The biological significance of this transient loss of occludin expression in terms of barrier function remains to be elucidated.  相似文献   

19.
Claudin-5 is a protein component of many endothelial tight junctions, including those at the blood-brain barrier, a barrier that limits molecular exchanges between the central nervous system and the circulatory system. To test the contribution of claudin-5 to this barrier function of tight junctions, we expressed murine claudin-5 in Madin-Darby canine kidney II cells. The result was a fivefold increase in transepithelial resistance in claudin-5 transductants and a reduction in conductance of monovalent cations. However, the paracellular flux of neither neutral nor charged monosaccharides was significantly changed in claudin-5 transductants compared to controls. Therefore, expression of claudin-5 selectively decreased the permeability to ions. Additionally, site-directed mutations of particular amino acid residues in the first extracellular domain of claudin-5 altered the properties of the tight junctions formed in response to claudin-5 expression. In particular, the conserved cysteines were crucial: mutation of either cysteine abolishted the ability of claudin-5 to increase transepithelial resistance, and mutation of Cys(64) strikingly increased the paracellular flux of monosaccharides. These new insights into the functions of claudin-5 at the molecular level in tight junctions may account for some aspects of the blood-brain barrier's selective permeability.  相似文献   

20.
Tight junctions govern the paracellular permeability of endothelial and epithelial cells. Aberrations of tight junction function are an early and key event during the vascular spread of cancer and inflammation. This study sought to determine the role of estrogen in the regulation of tight junctions and expression of molecules making tight junctions in endothelial cells. Human endothelial cell, HECV, which express ER-beta but not ER-alpha was used. 17-beta-estradiol induced a concentration- and time-dependent biphasic effect on tight junction. At 10(-9) and 10(-6) M, it decreased the level of occludin and increased in paracellular permeability of HECV cells, but at 10(-12) M it decreased in paracellular permeability and increased the level of occludin. The transendothelial electrical resistance (TER), however, was reduced by 17-beta-estradiol at lower concentrations (as low as 10(-12) M). Furthermore, the time-dependent biphasic effect was observed over a period of 4 days, with the first reduction of TER seen within 15 min and the second drop occurring 48 h after 17-beta-estradiol treatment. It was further revealed that protein and mRNA levels of occludin, but not claudin-1 and -5, and ZO-1, were reduced by 17-beta-estradiol, in line with changes of TER. This study shows that 17-beta-estradiol can induce concentration- and time-related biphasic effects on tight junction functions expression of occludin in endothelial cells and that this perturbation of tight junction functions may have implications in the etiology of mastalgia and the vascular spread of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号