共查询到20条相似文献,搜索用时 0 毫秒
1.
欧校冉夏亚一董海涛赵琳 《现代生物医学进展》2012,12(21):4170-4172
脊髓损伤(spinal cord injury,SCI)是临床上常见的一种创伤性疾病。随着社会的发展呈现上升的趋势,其来源主要有交通事故,工伤,坠落伤,暴力伤,运动损伤,积累性损伤等。传统的手术治疗是围绕脊柱的骨性结构进行椎管减压、脊柱稳定性的重建,并不能解决瘫痪的主要原因-脊髓损伤问题,预后并不理想。近年来国内外学者都在对SCI进行深入研究,想要找到SCI的根本机制,从而能针对性的研究出能改变SCI患者预后的药物。本文就对脊髓损伤目前的常用治疗药物做一篇综述。 相似文献
2.
本研究构建急性大鼠脊髓夹伤模型,并将大鼠随机分为单纯脊髓损伤对照组及脊髓损伤联合弱激光照射组。照射组应用810 nm波长,150 m W照射功率,照射光斑0.3 cm^2的弱激光对脊髓损伤区进行经皮照射,连续照射3天,7天或14天。应用免疫荧光、免疫印迹实验方法,测定脊髓损伤区巨噬细胞及小胶质细胞的极化表达。应用酶联免疫吸附法测定脊髓损伤区白细胞介素4的表达情况。应用坚牢蓝髓鞘染色测定两组损伤脊髓中髓鞘保留的差异。采用BBB评分对两组大鼠后肢运动功能的恢复进行评估。结果表明,810 nm弱激光对脊髓损伤区连续照射3天,7天后,可显著减少M1型巨噬细胞及其标志物诱导型一氧化氮合酶的表达,在7天时间增加M2型巨噬细胞及其标志物精氨酸酶1的表达。弱激光照射组白细胞介素4的表达明显增加。损伤后14天,弱激光照射组脊髓损伤区髓鞘保留面积比值明显提高。损伤后7天及14天时,弱激光照射组大鼠的BBB评分明显升高。该实验结果表明,810 nm弱激光经皮照射,可增加大鼠急性脊髓损伤区M2型巨噬细胞及小胶质细胞的表达,并减少脊髓损伤后的髓鞘脱失,促进脊髓损伤大鼠运动功能的恢复。 相似文献
3.
脊髓损伤多由高空坠落、车祸、运动冲击等原因引起,是脊柱外科的一种常见疾病,至今仍是一个治疗难题。低温疗法是一种重要的物理治疗手段,以多种机制减少脊髓损伤后有害因素的产生,是一种有效的脊髓保护途径。其在脊髓损伤的研究中表现出很好的效果,为脊髓损伤的治疗提供了新的思路,然而也发现一些低温治疗导致的全身性或某些系统为主的不良影响,需要我们进一步研究和解决,以期达到更好的治疗效果。本文就低温治疗用于脊髓损伤应用中的研究进展进行综述。 相似文献
4.
Nakul?P.?Thakore Supriti?Samantaray Sookyoung?Park Kenkichi?Nozaki Joshua?A.?Smith April?Cox James?Krause Naren?L.?Banik
To clarify the molecular changes of sublesional muscle in the acute phase of spinal cord injury (SCI), a moderately severe injury (40 g cm) was induced in the spinal cord (T10 vertebral level) of adult male Sprague–Dawley rats (injury) and compared with sham (laminectomy only). Rats were sacrificed at 48 h (acute) post injury, and gastrocnemius muscles were excised. Morphological examination revealed no significant changes in the muscle fiber diameter between the sham and injury rats. Western blot analyses performed on the visibly red, central portion of the gastrocnemius muscle showed significantly higher expression of muscle specific E3 ubiquitin ligases (muscle ring finger-1 and muscle atrophy f-box) and significantly lower expression of phosphorylated Akt-1/2/3 in the injury group compared to the sham group. Cyclooxygenase 2, tumor necrosis factor alpha (TNF-α), and caspase-1, also had a significantly higher expression in the injury group; although, the mRNA levels of TNF-α and IL-6 did not show any significant difference between the sham and injury groups. These results suggest activation of protein degradation, deactivation of protein synthesis, and development of inflammatory reaction occurring in the sublesional muscles in the acute phase of SCI before overt muscle atrophy is seen. 相似文献
5.
Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. 相似文献
6.
A tool such as a prosthetic device that extends or restores movement may become part of the identity of the person to whom it belongs. For example, some individuals with spinal cord injury (SCI) adapt their body and action representation to incorporate their wheelchairs. However, it remains unclear whether the bodily assimilation of a relevant external tool develops as a consequence of altered sensory and motor inputs from the body or of prolonged confinement sitting or lying in the wheelchair. To explore such relationships, we used a principal component analysis (PCA) on collected structured reports detailing introspective experiences of wheelchair use in 55 wheelchair-bound individuals with SCI. Among all patients, the regular use of a wheelchair induced the perception that the body’s edges are not fixed, but are instead plastic and flexible to include the wheelchair. The PCA revealed the presence of three major components. In particular, the functional aspect of the sense of embodiment concerning the wheelchair appeared to be modulated by disconnected body segments. Neither an effect of time since injury nor an effect of exposure to/experience of was detected. Patients with lesions in the lower spinal cord and with loss of movement and sensation in the legs but who retained upper body movement showed a higher degree of functional embodiment than those with lesions in the upper spinal cord and impairment in the entire body. In essence, the tool did not become an extension of the immobile limbs; rather, it became an actual tangible substitution of the functionality of the affected body part. These findings suggest that the brain can incorporate relevant artificial tools into the body schema via the natural process of continuously updating bodily signals. The ability to embody new essential objects extends the potentiality of physically impaired persons and can be used for their rehabilitation. 相似文献
7.
目的:探讨银杏内酯对大鼠急性脊髓损伤的保护作用。方法:选取健康成年正常SD大鼠54只,分正常组、损伤组和银杏内酯治疗组;采用改良Allen’s打击法制作脊髓损伤动物模型,分别在伤后6 h、12 h、24 h、72 h处死动物,采用免疫组织化学方法结合图像分析技术观测NF-κB和COX-2在脊髓腰段的表达情况。结果:脊髓神经功能评定显示银杏内酯治疗组大鼠神经功能较单纯损伤组有所改善;正常脊髓前角内NF-κB和COX-2有一定的基础表达。脊髓损伤后6 h脊髓神经元的胞浆及胞核内NF-κB和COX-2均先后表达上升,24 h达高峰,72 h仍维持在较高水平;而给予银杏内酯治疗后,各时间点NF-κB和COX-2的表达上调幅度均降低。结论:急性脊髓损伤后,银杏内酯可通过控制NF-κB和COX-2的表达上调的幅度而抑制炎症反应,对脊髓受损神经元起一定的保护作用。 相似文献
8.
Arnaud Dubory Elisabeth Laemmel Anna Badner Jacques Duranteau Eric Vicaut Charles Court Marc Soubeyrand 《Journal of visualized experiments : JoVE》2015,(99)
Reduced spinal cord blood flow (SCBF) (i.e., ischemia) plays a key role in traumatic spinal cord injury (SCI) pathophysiology and is accordingly an important target for neuroprotective therapies. Although several techniques have been described to assess SCBF, they all have significant limitations. To overcome the latter, we propose the use of real-time contrast enhanced ultrasound imaging (CEU). Here we describe the application of this technique in a rat contusion model of SCI. A jugular catheter is first implanted for the repeated injection of contrast agent, a sodium chloride solution of sulphur hexafluoride encapsulated microbubbles. The spine is then stabilized with a custom-made 3D-frame and the spinal cord dura mater is exposed by a laminectomy at ThIX-ThXII. The ultrasound probe is then positioned at the posterior aspect of the dura mater (coated with ultrasound gel). To assess baseline SCBF, a single intravenous injection (400 µl) of contrast agent is applied to record its passage through the intact spinal cord microvasculature. A weight-drop device is subsequently used to generate a reproducible experimental contusion model of SCI. Contrast agent is re-injected 15 min following the injury to assess post-SCI SCBF changes. CEU allows for real time and in-vivo assessment of SCBF changes following SCI. In the uninjured animal, ultrasound imaging showed uneven blood flow along the intact spinal cord. Furthermore, 15 min post-SCI, there was critical ischemia at the level of the epicenter while SCBF remained preserved in the more remote intact areas. In the regions adjacent to the epicenter (both rostral and caudal), SCBF was significantly reduced. This corresponds to the previously described “ischemic penumbra zone”. This tool is of major interest for assessing the effects of therapies aimed at limiting ischemia and the resulting tissue necrosis subsequent to SCI. 相似文献
9.
Vibhor Krishna Hampton Andrews Xing Jin Jin Yu Abhay Varma Xuejun Wen Mark Kindy 《Journal of visualized experiments : JoVE》2013,(78)
The translational potential of novel treatments should be investigated in severe spinal cord injury (SCI) contusion models. A detailed methodology is described to obtain a consistent model of severe SCI. Use of a stereotactic frame and computer controlled impactor allows for creation of reproducible injury. Hypothermia and urinary tract infection pose significant challenges in the post-operative period. Careful monitoring of animals with daily weight recording and bladder expression allows for early detection of post-operative complications. The functional results of this contusion model are equivalent to transection models. The contusion model can be utilized to evaluate the efficacy of both neuroprotective and neuroregenerative approaches. 相似文献
10.
Zinc concentrations in the dorsal horn of spinal cord are important for wound healing, neurological function, and reproduction. However, the response of the spinal cord to alterations in dietary zinc is unknown in rats after spinal cord injury (SCI). The current study explored cellular zinc levels and zinc transporter 1 (ZnT1) expression in the dorsal horn of spinal cord with different dietary zinc after SCI. A hundred and forty-four male Wistar rats were randomly divided into four groups: sham-operated group (30?mg Zn/kg), zinc-high dietary SCI model group (ZH, 180?mg Zn/kg), zinc-adequate dietary SCI model group (30?mg Zn/kg), and marginal zinc-deficient dietary SCI model group (MZD, 5?mg Zn/kg). To test the hypothesis that dietary zinc may regulate role of ZnT1 expression in dorsal horn after acute SCI, we traced ZnT1 proteins and zinc ions with immunohistochemistry, western blot, and autometallography. Zinc and ZnT1 levels of the dorsal horn in ZH significantly increased after surgery (P?<?0.05), reached peak level (P?<?0.05) on the seventh day, and subsequently levels of their expression began to decrease. But zinc levels and ZnT1 expression of spinal cord in MZD dietary groups decreased (P?<?0.05) in SCI. There was a positive correlation between ZnT1 protein and zinc content in spinal cord (R?=?0.49880, P?=?0.0492). We found that both zinc and ZnT1 expressions in spinal cord are regulated by dietary zinc. These results indicate that dietary zinc may regulate the expression of ZnT1 in the dorsal horn of spinal cord after SCI. ZnT1 may, at the same time, play a significant role in the maintenance of zinc homeostasis in SCI. 相似文献
11.
Peter E. Batchelor Taryn E. Wills Peta Skeers Camila R. Battistuzzo Malcolm R. Macleod David W. Howells Emily S. Sena 《PloS one》2013,8(8)
Background
The use of early decompression in the management of acute spinal cord injury (SCI) remains contentious despite many pre-clinical studies demonstrating benefits and a small number of supportive clinical studies. Although the pre-clinical literature favours the concept of early decompression, translation is hindered by uncertainties regarding overall treatment efficacy and timing of decompression.Methods
We performed meta-analysis to examine the pre-clinical literature on acute decompression of the injured spinal cord. Three databases were utilised; PubMed, ISI Web of Science and Embase. Our inclusion criteria consisted of (i) the reporting of efficacy of decompression at various time intervals (ii) number of animals and (iii) the mean outcome and variance in each group. Random effects meta-analysis was used and the impact of study design characteristics assessed with meta-regression.Results
Overall, decompression improved behavioural outcome by 35.1% (95%CI 27.4-42.8; I2=94%, p<0.001). Measures to minimise bias were not routinely reported with blinding associated with a smaller but still significant benefit. Publication bias likely also contributed to an overestimation of efficacy. Meta-regression demonstrated a number of factors affecting outcome, notably compressive pressure and duration (adjusted r2=0.204, p<0.002), with increased pressure and longer durations of compression associated with smaller treatment effects. Plotting the compressive pressure against the duration of compression resulting in paraplegia in individual studies revealed a power law relationship; high compressive forces quickly resulted in paraplegia, while low compressive forces accompanying canal narrowing resulted in paresis over many hours.Conclusion
These data suggest early decompression improves neurobehavioural deficits in animal models of SCI. Although much of the literature had limited internal validity, benefit was maintained across high quality studies. The close relationship of compressive pressure to the rate of development of severe neurological injury suggests that pressure local to the site of injury might be a useful parameter determining the urgency of decompression. 相似文献12.
Argelio Santos James Gurling Marcel F. Dvorak Vanessa K. Noonan Michael G. Fehlings Anthony S. Burns Rachel Lewis Lesley Soril Nader Fallah John T. Street Lise Bélanger Andrea Townson Liping Liang Derek Atkins 《PloS one》2013,8(8)
Background
A patient’s journey through the health care system is influenced by clinical and system processes across the continuum of care.Methods
To inform optimized access to care and patient flow for individuals with traumatic spinal cord injury (tSCI), we developed a simulation model that can examine the full impact of therapeutic or systems interventions across the care continuum for patients with traumatic spinal cord injuries. The objective of this paper is to describe the detailed development of this simulation model for a major trauma and a rehabilitation centre in British Columbia (BC), Canada, as part of the Access to Care and Timing (ACT) project and is referred to as the BC ACT Model V1.0.Findings
To demonstrate the utility of the simulation model in clinical and administrative decision-making we present three typical scenarios that illustrate how an investigator can track the indirect impact(s) of medical and administrative interventions, both upstream and downstream along the continuum of care. For example, the model was used to estimate the theoretical impact of a practice that reduced the incidence of pressure ulcers by 70%. This led to a decrease in acute and rehabilitation length of stay of 4 and 2 days, respectively and a decrease in bed utilization of 9% and 3% in acute and rehabilitation.Conclusion
The scenario analysis using the BC ACT Model V1.0 demonstrates the flexibility and value of the simulation model as a decision-making tool by providing estimates of the effects of different interventions and allowing them to be objectively compared. Future work will involve developing a generalizable national Canadian ACT Model to examine differences in care delivery and identify the ideal attributes of SCI care delivery. 相似文献13.
14.
脊髓损伤以后引起原发性损伤和继发性损伤导致损伤的神经组织难以修复。目前脊髓损伤的重点主要集中在减轻和延缓继发性损伤造成的伤害。本文总结了近年来在脊髓损伤治疗领域的进展包括传统的药物治疗,细胞移植和基因治疗。目前动物实验研究表明细胞移植和基因治疗在治疗脊髓损伤的中取得了可喜的成果,将在未来临床应用中发挥重要作用。 相似文献
15.
16.
Shucui Jiang Gemma Fischione Patricia Guiliani Silvia Romano Francesco Caciagli Patrizia DiIorio 《Nucleosides, nucleotides & nucleic acids》2013,32(6-7):673-680
Intraperitoneal administration of guanosine to rats with chronic spinal cord injury stimulates remyelination and functional recovery. If guanosine produced its effects in the nervous system, it should enter it and elevate endogenous concentrations. [ 3 H]-guanosine (8 mg/kg) was administered intraperitoneally to rats and its distribution and concentration in different sites determined. Guanosine rapidly entered all tissues; its concentration peaked at about 15 minutes except in adipose tissue and CNS where it continued to rise for 30 minutes. Its chief metabolic product in all sites was guanine with over twice as much guanine as guanosine present in CNS after 30 minutes. 相似文献
17.
研究脂多糖(LPS)诱导的炎症反应对运动神经元的损伤作用及其机制.采用SD乳鼠脊髓器官型培养,分为单纯培养液组和不同浓度LPS组,应用免疫组化、酶活性测定、电镜等技术衡量神经元损伤程度.对LPS组分别给予细胞内钙离子螯合剂BAPTA-AM和NADPH氧化酶抑制剂apocynin,观察运动神经元数量和形态变化.结果显示LPS可以引起剂量和时间依赖性的运动神经元数量减少和培养液中乳酸脱氢酶含量增高,运动神经元超微结构改变明显,中间神经元损伤相对较轻.运动神经元缺乏钙网膜蛋白表达,而BAPTA-AM减轻运动神经元损伤,提示钙离子缓冲能力较低是其较易受损的原因之一.LPS可以引起NADPH氧化酶活性增高,而apocynin对LPS引起的运动神经元丢失有保护作用,说明NADPH氧化酶在炎症介导的运动神经元损伤中发挥着关键作用. 相似文献
18.
Bigna Lenggenhager Mariella Pazzaglia Giorgio Scivoletto Marco Molinari Salvatore Maria Aglioti 《PloS one》2012,7(11)
Increasing evidence suggests that the basic foundations of the self lie in the brain systems that represent the body. Specific sensorimotor stimulation has been shown to alter the bodily self. However, little is known about how disconnection of the brain from the body affects the phenomenological sense of the body and the self. Spinal cord injury (SCI) patients who exhibit massively reduced somatomotor processes below the lesion in the absence of brain damage are suitable for testing the influence of body signals on two important components of the self–the sense of disembodiment and body ownership. We recruited 30 SCI patients and 16 healthy participants, and evaluated the following parameters: (i) depersonalization symptoms, using the Cambridge Depersonalization Scale (CDS), and (ii) measures of body ownership, as quantified by the rubber hand illusion (RHI) paradigm. We found higher CDS scores in SCI patients, which show increased detachment from their body and internal bodily sensations and decreasing global body ownership with higher lesion level. The RHI paradigm reveals no alterations in the illusory ownership of the hand between SCI patients and controls. Yet, there was no typical proprioceptive drift in SCI patients with intact tactile sensation on the hand, which might be related to cortical reorganization in these patients. These results suggest that disconnection of somatomotor inputs to the brain due to spinal cord lesions resulted in a disturbed sense of an embodied self. Furthermore, plasticity-related cortical changes might influence the dynamics of the bodily self. 相似文献
19.
Kathrin Koblinger Tamás Füzesi Jillian Ejdrygiewicz Aleksandra Krajacic Jaideep S. Bains Patrick J. Whelan 《PloS one》2014,9(10)
The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA) to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic) nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH) that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC), the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2), which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT). In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons. 相似文献
20.
Yongxing Song Zhongyou Zeng Caiyi Jin Jianqiao Zhang Baoyue Ding Feng Zhang 《Neurochemical research》2013,38(3):610-619
This study aimed to investigate the correlation between ginkgolide B (GB) and the JAK/STAT signaling pathway and to explore its regulating effect on secondary cell apoptosis following spinal cord injury (SCI), to elucidate the protective mechanism GB against acute SCI. Sprague–Dawley rats were randomly divided into a sham-operated group, an SCI group, an SCI + GB group, an SCI + methylprednisolone (MP) group, and an SCI + specific JAK inhibitor AG490 group. A rat model of acute SCI was established using the modified Allen’s method. At 4 h, 12 h, 1 day, 3 days, 7 days and 14 days after injury, injured T10 spinal cord specimens were harvested. GB significantly increased inclined plane test scores and Basso, Beattie, and Bresnahan scale scores in SCI rats from postoperative day 3 to day 14. The effect was equal to that of the positive control drug, MP. Western blot analysis showed that JAK2 was significantly phosphorylated from 4 h after SCI, peaked at 12 h and gradually decreased thereafter, accompanied by phosphorylation of STAT3 with a similar time course. GB was shown to significantly inhibit the phosphorylation of JAK2 and STAT3 in rats with SCI. It significantly increased the ratio of B cell CLL/lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) protein expression at 24 h, led to an obvious down-regulation of caspase-3 gene and protein expression at 3 days, and significantly decreased the cell apoptosis index at each time point after SCI. This effect was similar to that obtained with the JAK-specific inhibitor, AG490. Our experimental findings indicated that GB can protect rats against acute SCI, and that its underlying mechanism may be related to the inhibition of JAK/STAT signaling pathway activation, improvement of the Bcl-2/Bax ratio, decreased caspase-3 gene and protein expression and further inhibition of secondary cell apoptosis following SCI. 相似文献