首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to clarify the frequency of patients with type 1 diabetes that have serum that increases pancreatic β-cell cytoplasmic free Ca2+ concentration, [Ca2+]i, and if such an effect is also present in serum from first-degree relatives. We also studied a possible link between the serum effect and ethnic background as well as presence of autoantibodies. Sera obtained from three different countries were investigated as follows: 82 Swedish Caucasians with newly diagnosed type 1 diabetes, 56 Americans with different duration of type 1 diabetes, 117 American first-degree relatives of type 1 diabetic patients with a mixed ethnic background and 31 Caucasian Finnish children with newly diagnosed type 1 diabetes. Changes in [Ca2+]i , upon depolarization, were measured in β-cells incubated overnight with sera from type 1 diabetic patients, first-degree relatives or healthy controls. Our data show that there is a group constituting approximately 30% of type 1 diabetic patients of different gender, age, ethnic background and duration of the disease, as well as first-degree relatives of type 1 diabetic patients, that have sera that interfere with pancreatic β-cell Ca2+-handling. This effect on β-cell [Ca2+]i could not be correlated to the presence of autoantibodies. In a defined subgroup of patients with type 1 diabetes and first-degree relatives a defect Ca2+-handling may aggravate development of β-cell destruction.  相似文献   

2.
Glucagon is known to increase intracellular cAMP levels and enhance glucose-induced electrical activity and insulin secretion in pancreatic β-cell perfused with Krebs-Ringer bicarbonate solution. The present experiments were aimed at evaluation of the hypothesis that changes in β-cells ATP-sensitive K+ (K(ATP)) channel activity are involved in the glucagon-induced enhancement of electrical activity. Channel activity was recorded using the cell-attached configuration of the patch-clamp technique. Addition of glucagon (2.9 × 10−7 m) in the presence of 11.1 mm glucose caused closure of K(ATP) channels followed by an increase in the frequency of biphasic current transients (action currents) due to action potential generation in the cell. Three calmodulin-antagonists (W-7, chlorpromazine, and trifluoperazine) restored with similar efficacy K(ATP) channel activity in cells being exposed to glucagon. At 2.8 mm glucose, glucagon did not affect K(ATP) channel activity until Ca2+ was released from Nitr-5 by flash photolysis, at which point channel activity was transiently suppressed. Similar effects were seen when db-cAMP was used instead of glucagon.These results support the view that glucagon and other cAMP-generating agonists enhance glucose-induced β-cell electrical activity through a Ca2+/calmodulin dependent-closure of K(ATP) channels. Received: 26 May 1998/Revised: 18 September 1998  相似文献   

3.
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
Highlights
  • •Temporal proteome profiling of lipotoxicity and glucolipotoxicity in β-cells
  • •Palmitate induced cholesterol metabolism earlier than fatty acid metabolism
  • •Setd8 promotes palmitate + glucose-stimulated INS-1 cell proliferation
  • •PA induced apoptosis partially via upregulation of Rhob in INS-1 cells
  相似文献   

4.
Chronic saturated fatty acid exposure causes β-cell apoptosis and, thus, contributes to type 2 diabetes. Although endoplasmic reticulum (ER) stress and reduced ER-to-Golgi protein trafficking have been implicated, the exact mechanisms whereby saturated fatty acids trigger β-cell death remain elusive. Using mass spectroscopic lipidomics and subcellular fractionation, we demonstrate that palmitate pretreatment of MIN6 β-cells promoted ER remodeling of both phospholipids and sphingolipids, but only the latter was causally linked to lipotoxic ER stress. Thus, overexpression of glucosylceramide synthase, previously shown to protect against defective protein trafficking and ER stress, partially reversed lipotoxic reductions in ER sphingomyelin (SM) content and aggregation of ER lipid rafts, as visualized using Erlin1-GFP. Using both lipidomics and a sterol response element reporter assay, we confirmed that free cholesterol in the ER was also reciprocally modulated by chronic palmitate and glucosylceramide synthase overexpression. This is consistent with the known coregulation and association of SM and free cholesterol in lipid rafts. Inhibition of SM hydrolysis partially protected against ATF4/C/EBP homology protein induction because of palmitate. Our results suggest that loss of SM in the ER is a key event for initiating β-cell lipotoxicity, which leads to disruption of ER lipid rafts, perturbation of protein trafficking, and initiation of ER stress.  相似文献   

5.
6.
Glucose is a primary stimulator of insulin secretion in pancreatic β-cells. High concentration of glucose has been thought to exert its action solely through its metabolism. In this regard, we have recently reported that glucose also activates a cell-surface glucose-sensing receptor and facilitates its own metabolism. In the present study, we investigated whether glucose activates the glucose-sensing receptor and elicits receptor-mediated rapid actions. In MIN6 cells and isolated mouse β-cells, glucose induced triphasic changes in cytoplasmic Ca2+ concentration ([Ca2+]c); glucose evoked an immediate elevation of [Ca2+]c, which was followed by a decrease in [Ca2+]c, and after a certain lag period it induced large oscillatory elevations of [Ca2+]c. Initial rapid peak and subsequent reduction of [Ca2+]c were independent of glucose metabolism and reproduced by a nonmetabolizable glucose analogue. These signals were also blocked by an inhibitor of T1R3, a subunit of the glucose-sensing receptor, and by deletion of the T1R3 gene. Besides Ca2+, glucose also induced an immediate and sustained elevation of intracellular cAMP ([cAMP]c). The elevation of [cAMP]c was blocked by transduction of the dominant-negative Gs, and deletion of the T1R3 gene. These results indicate that glucose induces rapid changes in [Ca2+]c and [cAMP]c by activating the cell-surface glucose-sensing receptor. Hence, glucose generates rapid intracellular signals by activating the cell-surface receptor.  相似文献   

7.
8.
Failure of the functional pancreatic β-cell mass to expand in response to increased metabolic demand is a hallmark of type 2 diabetes. Lineage tracing studies indicate that replication of existing β-cells is important for β-cell proliferation in adult animals. In rat pancreatic β-cell lines (RIN5F), treatment with 100 nm thyroid hormone (triiodothyronine, T3) enhances cell proliferation. This result suggests that T3 is required for β-cell proliferation or replication. To identify the role of thyroid hormone receptor α (TRα) in the processes of β-cell growth and cell cycle regulation, we constructed a recombinant adenovirus vector, AdTRα. Infection with AdTRα to RIN5F cells increased the expression of cyclin D1 mRNA and protein. Overexpression of the cyclin D1 protein in AdTRα-infected cells led to activation of the cyclin D1/cyclin-dependent kinase/retinoblastoma protein/E2F pathway, along with cell cycle progression and cell proliferation following treatment with 100 nm T3. Conversely, lowering cellular cyclin D1 by small interfering RNA knockdown in AdTRα-infected cells led to down-regulation of the cyclin D1/CDK/Rb/E2F pathway and inhibited cell proliferation. Furthermore, in immunodeficient mice with streptozotocin-induced diabetes, intrapancreatic injection of AdTRα led to the restoration of islet function and to an increase in the β-cell mass. These results support the hypothesis that liganded TRα plays a critical role in β-cell replication and in expansion of the β-cell mass during postnatal development. Thus, liganded TRα may be a target for therapeutic strategies that can induce the expansion and regeneration of β-cells.  相似文献   

9.
In pancreatic β-cells, uptake of Ca2+ into mitochondria facilitates metabolism-secretion coupling by activation of various matrix enzymes, thus facilitating ATP generation by oxidative phosphorylation and, in turn, augmenting insulin release. We employed an siRNA-based approach to evaluate the individual contribution of four proteins that were recently described to be engaged in mitochondrial Ca2+ sequestration in clonal INS-1 832/13 pancreatic β-cells: the mitochondrial Ca2+ uptake 1 (MICU1), mitochondrial Ca2+ uniporter (MCU), uncoupling protein 2 (UCP2), and leucine zipper EF-hand-containing transmembrane protein 1 (LETM1). Using a FRET-based genetically encoded Ca2+ sensor targeted to mitochondria, we show that a transient knockdown of MICU1 or MCU diminished mitochondrial Ca2+ uptake upon both intracellular Ca2+ release and Ca2+ entry via L-type channels. In contrast, knockdown of UCP2 and LETM1 exclusively reduced mitochondrial Ca2+ uptake in response to either intracellular Ca2+ release or Ca2+ entry, respectively. Therefore, we further investigated the role of MICU1 and MCU in metabolism-secretion coupling. Diminution of MICU1 or MCU reduced mitochondrial Ca2+ uptake in response to d-glucose, whereas d-glucose-triggered cytosolic Ca2+ oscillations remained unaffected. Moreover, d-glucose-evoked increases in cytosolic ATP and d-glucose-stimulated insulin secretion were diminished in MICU1- or MCU-silenced cells. Our data highlight the crucial role of MICU1 and MCU in mitochondrial Ca2+ uptake in pancreatic β-cells and their involvement in the positive feedback required for sustained insulin secretion.  相似文献   

10.
Obesity is a major risk factor for diabetes and is typically associated with hyperleptinemia and a state of leptin resistance. The impact of chronically elevated leptin levels on the function of insulin-secreting β-cells has not been elucidated. We previously generated mice lacking leptin signaling in β-cells by using the Cre-loxP strategy and showed that these animals develop increased body weight and adiposity, hyperinsulinemia, impaired glucose-stimulated insulin secretion and insulin resistance. Here, we performed several in vitro studies and observed that β-cells lacking leptin signaling in this model are capable of properly metabolizing glucose, but show impaired intracellular Ca2+ oscillations and lack of synchrony within the islets in response to glucose, display reduced response to tolbutamide and exhibit morphological abnormalities including increased autophagy. Defects in intracellular Ca2+ signaling were observed even in neonatal islets, ruling out the possible contribution of obesity to the β-cell irregularities observed in adults. In parallel, we also detected a disrupted intracellular Ca2+ pattern in response to glucose and tolbutamide in control islets from adult transgenic mice expressing Cre recombinase under the rat insulin promoter, despite these animals being glucose tolerant and secreting normal levels of insulin in response to glucose. This unexpected observation impeded us from discerning the consequences of impaired leptin signaling as opposed to long-term Cre expression in the function of insulin-secreting cells. These findings highlight the need to generate improved Cre-driver mouse models or new tools to induce Cre recombination in β-cells.  相似文献   

11.
12.
Hyperinsulinemia (HI) is elevated plasma insulin at basal glucose. Impaired glucose tolerance is associated with HI, although the exact cause and effect relationship remains poorly defined. We tested the hypothesis that HI can result from an intrinsic response of the β-cell to chronic exposure to excess nutrients, involving a shift in the concentration dependence of glucose-stimulated insulin secretion. INS-1 (832/13) cells were cultured in either a physiological (4 mm) or high (11 mm) glucose concentration with or without concomitant exposure to oleate. Isolated rat islets were also cultured with or without oleate. A clear hypersensitivity to submaximal glucose concentrations was evident in INS-1 cells cultured in excess nutrients such that the 25% of maximal (S0.25) glucose-stimulated insulin secretion was significantly reduced in cells cultured in 11 mm glucose (S0.25 = 3.5 mm) and 4 mm glucose with oleate (S0.25 = 4.5 mm) compared with 4 mm glucose alone (S0.25 = 5.7 mm). The magnitude of the left shift was linearly correlated with intracellular lipid stores in INS-1 cells (r2 = 0.97). We observed no significant differences in the dose responses for glucose stimulation of respiration, NAD(P)H autofluorescence, or Ca2+ responses between left- and right-shifted β-cells. However, a left shift in the sensitivity of exocytosis to Ca2+ was documented in permeabilized INS-1 cells cultured in 11 versus 4 mm glucose (S0.25 = 1.1 and 1.7 μm, respectively). Our results suggest that the sensitivity of exocytosis to triggering is modulated by a lipid component, the levels of which are influenced by the culture nutrient environment.  相似文献   

13.
Store-operated Ca2+ channels (SOCs) are voltage-independent Ca2+ channels activated upon depletion of the endoplasmic reticulum Ca2+ stores. Early studies suggest the contribution of such channels to Ca2+ homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca2+ depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca2+ imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca2+ entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes.  相似文献   

14.
The Rac1/JNK cascade plays important roles in DNA damage-induced apoptosis. However, how this cascade is activated upon DNA damage remains to be fully understood. We show here that, in untreated cells, Tiam1, a Rac1-specific guanine nucleotide exchange factor, is phosphorylated by casein kinase 1 (CK1) at its C terminus, leading to Skp, Cullin, F-box-containingβ-TrCP recognition, ubiquitination, and proteasome-mediated degradation. Upon DNA-damaging anticancer drug treatment, CK1/β-TrCP-mediated Tiam1 degradation is abolished, and the accumulated Tiam1 contributes to downstream activation of Rac1/JNK. Consistently, tumor cells overexpressing Tiam1 are hypersensitive to DNA-damaging drug treatment. In xenograft mice, Tiam1-high cells are more susceptible to doxorubicin treatment. Thus, our results uncover that inhibition of proteasome-mediated Tiam1 degradation is an upstream event leading to Rac1/JNK activation and cell apoptosis in response to DNA-damaging drug treatment.  相似文献   

15.
This investigation explored the mechanism for inhibition of β2 integrin adhesion molecules when neutrophils are exposed to nitric oxide (NO). Roles for specific proteins were elucidated using chemical inhibitors, depletion with small inhibitory RNA, and cells from knock-out mice. Optimal inhibition occurs with exposures to a NO flux of ∼28 nmol/min for 2 min or more, which sets up an autocatalytic cascade triggered by activating type 2 nitric-oxide synthase (NOS-2) and NADPH oxidase (NOX). Integrin inhibition does not occur with neutrophils exposed to a NOX inhibitor (Nox2ds), a NOS-2 inhibitor (1400W), or with cells from mice lacking NOS-2 or the gp91phox component of NOX. Reactive species cause S-nitrosylation of cytosolic actin that enhances actin polymerization. Protein cross-linking and actin filament formation assays indicate that increased polymerization occurs because of associations involving vasodilator-stimulated phosphoprotein, focal adhesion kinase, and protein-disulfide isomerase in proximity to actin filaments. These effects were inhibited in cells exposed to ultraviolet light which photo-reverses S-nitrosylated cysteine residues and by co-incubations with cytochalasin D. The autocatalytic cycle can be arrested by protein kinase G activated with 8-bromo-cyclic GMP and by a high NO flux (∼112 nmol/min) that inactivates NOX.  相似文献   

16.

Background

RalA and RalB are multifuntional GTPases involved in a variety of cellular processes including proliferation, oncogenic transformation and membrane trafficking. Here we investigated the mechanisms leading to activation of Ral proteins in pancreatic β-cells and analyzed the impact on different steps of the insulin-secretory process.

Methodology/Principal Findings

We found that RalA is the predominant isoform expressed in pancreatic islets and insulin-secreting cell lines. Silencing of this GTPase in INS-1E cells by RNA interference led to a decrease in secretagogue-induced insulin release. Real-time measurements by fluorescence resonance energy transfer revealed that RalA activation in response to secretagogues occurs within 3–5 min and reaches a plateau after 10–15 min. The activation of the GTPase is triggered by increases in intracellular Ca2+ and cAMP and is prevented by the L-type voltage-gated Ca2+ channel blocker Nifedipine and by the protein kinase A inhibitor H89. Defective insulin release in cells lacking RalA is associated with a decrease in the secretory granules docked at the plasma membrane detected by Total Internal Reflection Fluorescence microscopy and with a strong impairment in Phospholipase D1 activation in response to secretagogues. RalA was found to be activated by RalGDS and to be severely hampered upon silencing of this GDP/GTP exchange factor. Accordingly, INS-1E cells lacking RalGDS displayed a reduction in hormone secretion induced by secretagogues and in the number of insulin-containing granules docked at the plasma membrane.

Conclusions/Significance

Taken together, our data indicate that RalA activation elicited by the exchange factor RalGDS in response to a rise in intracellular Ca2+ and cAMP controls hormone release from pancreatic β-cell by coordinating the execution of different events in the secretory pathway.  相似文献   

17.
Pancreatic β-cells are vulnerable to multiple stresses, leading to dysfunction and apoptotic death. Deterioration in β-cells function and mass is associated with type 2 diabetes. Comparative two-dimensional gel electrophoresis from pancreatic MIN6 cells that were maintained at varying glucose concentrations was carried out. An induced expression of a protein spot, detected in MIN6 cells experiencing high glucose concentration, was identified by mass spectrometry as the oxidized form of DJ-1. DJ-1 (park7) is a multifunctional protein implicated in familial Parkinsonism and neuroprotection in response to oxidative damage. The DJ-1 protein and its oxidized form were also induced following exposure to oxidative and endoplasmic reticulum stress in MIN6 and βTC-6 cells and also in mouse pancreatic islets. Suppression of DJ-1 levels by small interfering RNA led to an accelerated cell death, whereas an increase in DJ-1 levels by adenovirus-based infection attenuated cell death induced by H2O2 and thapsigargin in β-cell lines and mouse pancreatic islets. Furthermore, DJ-1 improved regulated insulin secretion under basal as well as oxidative and endoplasmic reticulum stress conditions in a dose-dependent manner. We identified TFII-I (Gtf2i) as DJ-1 partner in the cytosol, whereas the binding of TFII-I to DJ-1 prevented TFII-I translocation to the nucleus. The outcome was attenuation of the stress response. Our results suggest that DJ-1 together with TFII-I operate in concert to cope with various insults and to sustain pancreatic β-cell function.  相似文献   

18.

Background

The endoplasmic reticulum (ER) is a cellular compartment for the biosynthesis and folding of newly synthesized secretory proteins such as insulin. Perturbations to ER homeostasis cause ER stress and subsequently activate cell signaling pathways, collectively known as the Unfolded Protein Response (UPR). IRE1α is a central component of the UPR. In pancreatic β-cells, IRE1α also functions in the regulation of insulin biosynthesis.

Principal Findings

Here we report that hyperactivation of IRE1α caused by chronic high glucose treatment or IRE1α overexpression leads to insulin mRNA degradation in pancreatic β-cells. Inhibition of IRE1α signaling using its dominant negative form prevents insulin mRNA degradation. Islets from mice heterozygous for IRE1α retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates.

Conclusions/Significance

These results reveal a role of IRE1α in insulin mRNA expression under ER stress conditions caused by chronic high glucose. The rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism would preserve ER homeostasis and help ensure that the insulin already inside the ER can be properly folded and secreted. This adaptation may be crucial for the maintenance of β-cell homeostasis and may explain why the β-cells of type 2 diabetic patients with chronic hyperglycemia stop producing insulin in the absence of apoptosis. This mechanism may also be involved in suppression of the autoimmune type 1 diabetes by reducing the amount of misfolded insulin, which could be a source of “neo-autoantigens.”  相似文献   

19.
20.
Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) (EIF2AK3) is essential for normal development and function of the insulin-secreting β-cell. Although genetic ablation of PERK in β-cells results in permanent neonatal diabetes in humans and mice, the underlying mechanisms remain unclear. Here, we used a newly developed and highly specific inhibitor of PERK to determine the immediate effects of acute ablation of PERK activity. We found that inhibition of PERK in human and rodent β-cells causes a rapid inhibition of secretagogue-stimulated subcellular Ca2+ signaling and insulin secretion. These dysfunctions stem from alterations in store-operated Ca2+ entry and sarcoplasmic endoplasmic reticulum Ca2+-ATPase activity. We also found that PERK regulates calcineurin, and pharmacological inhibition of calcineurin results in similar defects on stimulus-secretion coupling. Our findings suggest that interplay between calcineurin and PERK regulates β-cell Ca2+ signaling and insulin secretion, and that loss of this interaction may have profound implications in insulin secretion defects associated with diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号