首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Recombinant DNA plasmids containing inserts from the glnA region of Escherichia coli were used to study the expression of gln, hut, and nif operons in a regulation defective mutant (GlnHutNif) of Klebsiella pneumoniae, KP5060. Genes adjacent to the C-terminal end of glnA on the E. coli chromosome were able to derepress hut and nif operons in K. pneumoniae in the absence of glnA product. However, complete derepression of nif operons required inclusion of the segment adjacent to the N-terminal end of the glnA region of the E. coli chromosome along with the C-terminal end segment. In the absence of functional glnA, such a fully derepressed strain expressed nif and hut constitutively indicating a role for the catalytic activity of glutamine synthetase in repression of the genes under nitrogen control.  相似文献   

3.
4.
5.
6.
The ςS- and ς70-associated forms of RNA polymerase core enzyme (E) of Escherichia coli have very similar promoter recognition specificities in vitro. Nevertheless, the in vivo expression of many stress response genes is strongly dependent on ςS. Based on in vitro assays, it has recently been proposed that the disaccharide trehalose specifically stimulates the formation and activity of EςS and thereby contributes to promoter selectivity (S. Kusano and A. Ishihama, J. Bacteriol. 179:3649–3654, 1997). However, we demonstrate here that a trehalose-free otsA mutant exhibits growth phase-related and osmotic induction of various ςS-dependent genes which is indistinguishable from that of an otherwise isogenic wild-type strain and that stationary-phase cells do not accumulate trehalose (even though the trehalose-synthesizing enzymes are induced). We conclude that in vivo trehalose does not play a role in the expression of ςS-dependent genes and therefore also not in sigma factor selectivity at the promoters of these genes.  相似文献   

7.
8.
9.
10.
11.
12.
13.
We define chromosomal replication complexity (CRC) as the ratio of the copy number of the most replicated regions to that of unreplicated regions on the same chromosome. Although a typical CRC of eukaryotic or bacterial chromosomes is 2, rapidly growing Escherichia coli cells induce an extra round of replication in their chromosomes (CRC = 4). There are also E. coli mutants with stable CRC∼6. We have investigated the limits and consequences of elevated CRC in E. coli and found three limits: the “natural” CRC limit of ∼8 (cells divide more slowly); the “functional” CRC limit of ∼22 (cells divide extremely slowly); and the “tolerance” CRC limit of ∼64 (cells stop dividing). While the natural limit is likely maintained by the eclipse system spacing replication initiations, the functional limit might reflect the capacity of the chromosome segregation system, rather than dedicated mechanisms, and the tolerance limit may result from titration of limiting replication factors. Whereas recombinational repair is beneficial for cells at the natural and functional CRC limits, we show that it becomes detrimental at the tolerance CRC limit, suggesting recombinational misrepair during the runaway overreplication and giving a rationale for avoidance of the latter.  相似文献   

14.
Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis.  相似文献   

15.
16.
The BCNT (Bucentaur) superfamily is classified by an uncharacteristic conserved sequence of ∼80 amino acids (aa) at the C-terminus, BCNT-C (the conserved C-terminal region of Bcnt/Cfdp1). Whereas the yeast Swc5 and Drosophila Yeti homologues play crucial roles in chromatin remodelling organization, mammalian Bcnt/Cfdp1 (craniofacial developmental protein 1) remains poorly understood. The protein, which lacks cysteine, is largely disordered and comprises an acidic N-terminal region, a lysine/glutamic acid/proline-rich 40 aa sequence and BCNT-C. It shows complex mobility on SDS/PAGE at ∼50 kDa, whereas its calculated molecular mass is ∼33 kDa. To characterize this mobility discrepancy and the effects of post-translational modifications (PTMs), we expressed various deleted His–Bcnt in E. coli and HEK cells and found that an acidic stretch in the N-terminal region is a main cause of the gel shift. Exogenous BCNT/CFDP1 constitutively expressed in HEK clones appears as a doublet at 49 and 47 kDa, slower than the protein expressed in Escherichia coli but faster than the endogenous protein on SDS/PAGE. Among seven in vivo phosphorylation sites, Ser250, which resides in a region between disordered and ordered regions in BCNT-C, is heavily phosphorylated and detected predominantly in the 49 kDa band. Together with experiments involving treatment with phosphatases and Ser250 substitutions, the results indicate that the complex behaviour of Bcnt/Cfdp1 on SDS/PAGE is caused mainly by an acidic stretch in the N-terminal region and Ser250 phosphorylation in BCNT-C. Furthermore, Bcnt/Cfdp1 is acetylated in vitro by CREB-binding protein (CBP) and four lysine residues including Lys268 in BCNT-C are also acetylated in vivo, revealing a protein regulated at multiple levels.  相似文献   

17.
The σs subunit of Escherichia coli RNA polymerase holoenzyme (EσS) is a key factor of gene expression upon entry into stationary phase and in stressful conditions. The selectivity of promoter recognition by EσS and the housekeeping Eσ70 is as yet not clearly understood. We used a genetic approach to investigate the interaction of σS with its target promoters. Starting with down-promoter variants of a σS promoter target, osmEp, altered in the –10 or –35 elements, we isolated mutant forms of σS suppressing the promoter defects. The activity of these suppressors on variants of osmEp and ficp, another target of σS, indicated that σS is able to interact with the same key features within a promoter sequence as σ70. Indeed, (i) σS can recognize the –35 element of some but not all its target promoters, through interactions with its 4.2 region; and (ii) amino acids within the 2.4 region participate in the recognition of the –10 element. More specifically, residues Q152 and E155 contribute to the strong preference of σS for a C in position –13 and residue R299 can interact with the –31 nucleotide in the –35 element of the target promoters.  相似文献   

18.
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼150 h (∼6 days), providing a good model to characterize the football-shaped complex.  相似文献   

19.
We attempted to optimize the production of zeaxanthin in Escherichia coli by reordering five biosynthetic genes in the natural carotenoid cluster of Pantoea ananatis. Newly designed operons for zeaxanthin production were constructed by the ordered gene assembly in Bacillus subtilis (OGAB) method, which can assemble multiple genes in one step using an intrinsic B. subtilis plasmid transformation system. The highest level of production of zeaxanthin in E. coli (820 μg/g [dry weight]) was observed in the transformant with a plasmid in which the gene order corresponds to the order of the zeaxanthin metabolic pathway (crtE-crtB-crtI-crtY-crtZ), among a series of plasmids with circularly permuted gene orders. Although two of five operons using intrinsic zeaxanthin promoters failed to assemble in B. subtilis, the full set of operons was obtained by repressing operon expression during OGAB assembly with a pR promoter-cI repressor system. This result suggests that repressing the expression of foreign genes in B. subtilis is important for their assembly by the OGAB method. For all tested operons, the abundance of mRNA decreased monotonically with the increasing distance of the gene from the promoter in E. coli, and this may influence the yield of zeaxanthin. Our results suggest that rearrangement of biosynthetic genes in the order of the metabolic pathway by the OGAB method could be a useful approach for metabolic engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号