首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Low molecular weight soybean peptide (LSP) was applied to normal human epidermal keratinocytes, and the results showed a significant increase in the gene expression levels of involucrin, transglutaminase, and profilaggrin. Filaggrin protein levels were also significantly higher. It is possible that LSP has an epidermal cell differentiation-promoting effect and may be able to regulate metabolism of the epidermis.  相似文献   

2.
《Developmental cell》2022,57(15):1899-1916.e6
  1. Download : Download high-res image (245KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
5.
Descargues P  Sil AK  Karin M 《The EMBO journal》2008,27(20):2639-2647
IκB kinase α (IKKα), one of the two catalytic subunits of the IKK complex involved in nuclear factor κB (NF-κB) activation, also functions as a molecular switch that controls epidermal differentiation. This unexpected function requires IKKα nuclear translocation but does not depend on its kinase activity, and is independent of NF-κB signalling. Ikkα–/– mice present with a hyperproliferative and undifferentiated epidermis characterized by complete absence of a granular layer and stratum corneum. Ikkα-deficient keratinocytes do not express terminal differentiation markers and continue to proliferate even when subjected to differentiation-inducing stimuli. This antiproliferative function of IKKα is also important for the suppression of squamous cell carcinogenesis. The exact mechanisms by which nuclear IKKα controls keratinocyte proliferation and differentiation remained mysterious for some time. Recent studies, however, have revealed that IKKα is a major cofactor in a TGFβ–Smad2/3 signalling pathway that is Smad4 independent. This pathway controls cell cycle withdrawal during keratinocyte terminal differentiation. Although these are not the only functions of nuclear IKKα, this multifunctional protein is a key regulator of keratinocyte and epidermal differentiation and a critical suppressor of skin cancer.  相似文献   

6.
The major epidermal integrins are alpha3beta1 and hemidesmosome-specific alpha6beta4; both share laminin 5 as ligand. Keratinocyte culture studies implicate both integrins in adhesion, proliferation, and stem cell maintenance and suggest unique roles for alphabeta1 integrins in migration and terminal differentiation. In mice, however, whereas ablation of alpha6 or beta4 results in loss of hemidesmosomes, epidermal polarity, and basement membrane (BM) attachment, ablation of alpha3 only generates microblistering due to localized internal shearing of BM. Using conditional knockout technology to ablate beta1 in skin epithelium, we have uncovered biological roles for alphabeta1 integrins not predicted from either the alpha3 knockout or from in vitro studies. In contrast to alpha3 null mice, beta1 mutant mice exhibit severe skin blistering and hair defects, accompanied by massive failure of BM assembly/organization, hemidesmosome instability, and a failure of hair follicle keratinocytes to remodel BM and invaginate into the dermis. Although epidermal proliferation is impaired, a spatial and temporal program of terminal differentiation is executed. These results indicate that beta1's minor partners in skin are important, and together, alphabeta1 integrins are required not only for extracellular matrix assembly but also for BM formation. This, in turn, is required for hemidesmosome stability, epidermal proliferation, and hair follicle morphogenesis. However, beta1 downregulation does not provide the trigger to terminally differentiate.  相似文献   

7.
Summary In order to clarify the environmental factors modulating cell migration, we investigated the effects of human serum on cell migration, and found that serum from adult donors strongly (by 48%) suppressed the migration of human fetal skin fibroblasts into a denuded area in a cell monolayer. Human serum from old donors inhibited cell migration more strongly than that from adult donors. Next, we investigated the properties of migration-inhibitory activity of human serum and serum proteins in order to identify migration-inhibitory substances. Human serum from adult donors strongly suppressed the migration of human fetal skin fibroblasts, although it stimulated cell proliferation more strongly than fetal bovine serum (FBS), indicating that the inhibitory effects of human serum on cell migration was not due to its toxic effects. The inhibition of cell migration by human serum was concentration dependent. It was demonsstrated that the inhibition did not depend on the inhibitory effects of human serum on collagen synthesis. The migration-inhibitory activity was seen in fractions over 100 kDa, as determined by an ultrafiltration membrane, and no inhibitory activity was observed in fractions under 100 kDa. On the other hand, it was not detected either in fractions over 100 kDa or under 100 kDa in FBS. Among the over 100 kDa human serum proteins examined, γ-globulin, α2-macroglobulin, and low density lipoprotein (LDL) suppressed fibroblast migration in a concentration-dependent manner. However, among the three, cell migration-inhibiting activity of γ-globulin almost disappeared when cell migration was conducted in 10% FBS-supplemented medium. These results indicated that α2-macroglobulin and LDL were candidate substances for cell migration-inhibiting activity in human serum.  相似文献   

8.
9.
The functional importance of water storage in the arborescent palm, Sabal palmetto, was investigated by observing aboveground water content, pressure-volume curve parameters of leaf and stem tissue and leaf epidermal conductance rates. The ratio of the amount of water stored within the stem to the leaf area (kg m?2) increased linearly with plant height. Pressure-volume curves for leaf and stem parenchyma differed markedly; leaves lost turgor at 0.90 relative water content and –3.81 MPa, while the turgor loss point for stem parenchyma occurred at 0–64 relative water content and ?0.96 MPa. Specific capacitance (change in relative water content per change in tissue water potential) of stem parenchyma tissue was 84 times higher than that of leaves, while the bulk modulus of elasticity was 346 times lower. Leaf epidermal conductance rates were extremely low (0.32–0.56 mmol m?2 s?1) suggesting that S. palmetto are able to strongly restrict foliar water loss rates. Structurally, stems of S. palmetto appear to be well suited to act as a water storage reservoir, and coupled with the ability to restrict water loss from leaf surfaces, may play an important role in tree survival during periods of low water availability.  相似文献   

10.
Interactions between melanocytes and neighboring cells in the skin (keratinocytes and fibroblasts) play important roles in regulating human skin color. We recently reported that neuregulin-1 (NRG1) is highly expressed in fibroblasts from Fitzpatrick type VI skin (the darkest) and at least in part determines the constitutive color of human skin. We have now characterized the bioactive motif of NRG1 that is involved in modulating melanin production in human melanocytes. We found that 8-mer motifs (PSRYLCKC and LCKCPNEF) increased melanin production but did not increase the proliferation of melanocytes; the minimum fragment that could elicit that effect was the tetrapeptide LCKC. This smaller bioactive peptide might have an advantage in clinical applications in which it modulates only pigmentation and does not stimulate melanocyte proliferation.  相似文献   

11.
Stem cells reside in specialized niches in vivo. Specific factors, including the extracellular matrix (ECM), in these niches are directly responsible for maintaining the stem cell population. During development, components of the stem cell microenvironment also control differentiation with precise spatial and temporal organization. The stem cell microenvironment is dynamically regulated by the cellular component, including stem cells themselves. Thus, a mechanism exists whereby stem cells modify the ECM, which in turn affects the fate of the stem cell. In this study, we investigated whether the type of ECM initially adsorbed to the culture substrate can influence the composition of the ECM deposited by human embryonic stem cells (hESCs) differentiating in embryoid bodies, and whether different ECM composition and deposition profiles elicit distinct differentiation fates. We have shown that the initial ECM environment hESCs are exposed to affects the fate decisions of those cells and that this initial ECM environment is constantly modified during the differentiation process. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:212–219, 2015  相似文献   

12.
Summary Human fetal skin fibroblasts (TIG-3S) were found to migrate into a denuded area in a cell monolayer when cultured in both serum-depleted and serum-supplemented media, unlike adult-donor skin fibroblasts which migrated well only when cultured in serum-supplemented medium. Therefore, a series of experiments was carried out to determine whether autocrine factors are involved in their migration. The migration of TIG-3S cells in serum-depleted medium was suppressed by the addition of suramin, a factor with growth factor antagonist properties, which suggests that growth factors are important for cell migration. The suramin-induced inhibition was reversed completely by adding excess basic fibroblast growth factor (bFGF) to the culture medium and partially by platelet-derived growth factor (PDGF). Treatment with neutralizing anti-PDGF antibody did not suppress TIG-3S cell migration, whereas neutralizing anti-bFGF antibody did, which indicates that bFGF is an autocrine and PDGF a paracrine factor involved in cell migration. Next, an experiment was performed to ascertain whether the extracellular matrix is involved in TIG-3S cell migration. Monensin, an inhibitor of extracellular matrix secretion, inhibited cell migration, which was reversed by adding excess type I collagen, but not excess plasma fibronectin. In addition, further evidence for the involvement of collagen was provided by the observation that ethyl-3,4-dihydroxybenzoate, a specific inhibitor of collagen synthesis, suppressed cell migration. These results suggest that the autonomous migration of TIG-3S human fetal skin fibroblasts is mediated by bFGF and type I collagen, which they produce and secrete.  相似文献   

13.
The palea and lemma are unique organs in grass plants that form a protective barrier around the floral organs and developing kernel. The interlocking of the palea and lemma is critical for maintaining fertility and seed yield in rice; however, the molecules that control the interlocking structure remain largely unknown. Here, we showed that when OsCR4 mRNA expression was knocked down in rice by RNA interference, the palea and lemma separated at later spikelet stages and gradually turned brown after heading, resulting in the severe interruption of pistil pollination and damage to the development of embryo and endosperm, with defects in aleurone. The irregular architecture of the palea and lemma was caused by tumour-like cell growth in the outer epidermis and wart-like cell masses in the inner epidermis. These abnormal cells showed discontinuous cuticles and uneven cell walls, leading to organ self-fusion that distorted the interlocking structures. Additionally, the faster leakage of chlorophyll, reduced silica content and elevated accumulation of anthocyanin in the palea and lemma indicated a lesion in the protective barrier, which also impaired seed quality. OsCR4 is an active receptor-like kinase associated with the membrane fraction. An analysis of promoter::GUS reporter plants showed that OsCR4 is specifically expressed in the epidermal cells of paleas and lemmas. Together, these results suggest that OsCR4 plays an essential role in maintaining the interlocking of the palea and lemma by promoting epidermal cell differentiation.  相似文献   

14.
Wound healing is a complex sequence of cellular and molecular processes such as inflammation, cell migration, proliferation and differentiation. ROCK is a widely investigated Ser/Thr kinase with important roles in rearranging the actomyosin cytoskeleton. ROCK inhibitors have already been approved to improve corneal endothelial wound healing. The purpose of this study was to investigate the functions of myosin phosphatase (MP or PPP1CB), a type-1 phospho-Ser/Thr-specific protein phosphatase (PP1), one of the counter enzymes of ROCK, in skin homeostasis and wound healing. To confirm our hypotheses, we applied tautomycin (TM), a selective PP1 inhibitor, on murine skin that caused the arrest of wound closure. TM suppressed scratch closure of HaCaT human keratinocytes without having influence on the survival of the cells. Silencing of, the regulatory subunit of MP (MYPT1 or PPP1R12A), had a negative impact on the migration of keratinocytes and it influenced the cell-cell adhesion properties by decreasing the impedance of HaCaT cells. We assume that MP differentially activates migration and differentiation of keratinocytes and plays a key role in the downregulation of transglutaminase-1 in lower layers of skin where no differentiation is required. MAPK Proteome Profiler analysis on human ex vivo biopsies with MYPT1-silencing indicated that MP contributes to the mediation of wound healing by regulating the Akt signaling pathway. Our findings suggest that MP plays a role in the maintenance of normal homeostasis of skin and the process of wound healing.  相似文献   

15.
Leaves from Phyllanthus muellerianus (Kuntze) Exell. are traditionally used for wound healing in Western Africa. Aqueous extracts of dried leaves recently have been shown to stimulate proliferation of human keratinocytes and dermal fibroblasts. Within bioassay-guided fractionation the ellagitannins geraniin (1), corilagin (2), furosin (3), the flavonoids quercetin-3-O-β-d-glucoside (isoquercitrin), kaempferol-3-O-β-d-glucoside (astragalin), quercetin-3-O-d-rutinoside (rutin), gallic acid, methyl gallate, caffeic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid and caffeoylmalic acid (phaselic acid) have been identified in P. muellerianus for the first time. Geraniin was shown to be the dominant component of an aqueous extract.Suitable analytical methods for quality control of geraniin in P. muellerianus extract (methanol/water, 70/30) have been developed and validated based on ICH guidelines (ICH-compliant protocol).Geraniin and furosin increased the cellular energy status of human skin cells (dermal fibroblasts NHDF, HaCaT keratinocytes), triggering the cells towards higher proliferation rates, with fibroblasts being more sensitive than keratinocytes. Highest stimulation of NHDF by geraniin was found at 5 μM, and of keratinocytes at 50-100 μM. Furosin stimulated NHDF at about 50 μM, keratinocytes at about 150-200 μM. Necrotic cytotoxicity of geraniin, as measured by LDH release, was observed at 20 μM for NHDF and 150 μM for keratinocytes. Toxicity of furosin - less than that of geraniin - was observed at >400 μM.Furosin and geraniin stimulated the biosynthesis of collagen from NHDF at 50 μM and 5-10 μM respectively. Geraniin at 105 μM significantly stimulated the differentiation in NHEK while furosin had a minor influence on the expression of involucrin and cytokeratins K1 and K10. The study proves clearly that hydrophilic extracts from P. muellerianus and especially the lead compound geraniin exhibit stimulating activity on dermal fibroblasts and keratinocytes, leading to increased cell proliferation, barrier formation and formation of extracellular matrix proteins. From these findings the traditional clinical use of such extracts for wound healing seems to be justified.  相似文献   

16.
17.
18.
The present report is a part of our continuing efforts to explore the utility of the rat epidermal keratinocyte organotypic culture (ROC) as an alternative model to human skin in transdermal drug delivery and skin irritation studies of new chemical entities and formulations. The aim of the present study was to compare the stratum corneum lipid content of ROC with the corresponding material from human skin. The lipid composition was determined by thin-layer chromatography (TLC) and mass-spectrometry, and the thermal phase transitions of stratum corneum were studied by differential scanning calorimetry (DSC). All major lipid classes of the stratum corneum were present in ROC in a similar ratio as found in human stratum corneum. Compared to human skin, the level of non-hydroxyacid-sphingosine ceramide (NS) was increased in ROC, while α-hydroxyacid-phytosphingosine ceramide (AP) and non-hydroxyacid-phytosphingosine ceramides (NP) were absent. Also some alterations in fatty acid profiles of ROC ceramides were noted, e.g., esterified ω-hydroxyacid-sphingosine contained increased levels of oleic acid instead of linoleic acid. The fraction of lipids covalently bound to corneocyte proteins was distinctly lower in ROC compared to human skin, in agreement with the results from DSC. ROC underwent a lipid lamellar order to disorder transition (T2) at a slightly lower temperature (68 °C) than human skin (74 °C). These differences in stratum corneum lipid composition and the thermal phase transitions may explain the minor differences previously observed in drug permeation between ROC and human skin.  相似文献   

19.
An arabinogalactan protein (F2) was isolated in 1.5% yield from the seeds of Ribes nigrum L. (Grossulariaceae) by aqueous extraction and a one-step anion exchange chromatography on DEAE-Sephacel with 24% galactose, 43% arabinose, and 20% xylose as main carbohydrate residues. Methylation analysis revealed the presence of a 1,3-/1,3,6-galactose backbone, side chains from arabinose in different linkages, and terminal xylose residues. The polysaccharide which turned out to be an arabinogalactan protein had a molecular weight of >106 Da and deaggregated under chaotropic conditions. The cellular dehydrogenase activities (MTT and WST-1 tests) of human skin cells (fibroblasts, keratinocytes) as well as the proliferation rate of keratinocytes (BrdU incorporation ELISA) were significantly stimulated by the polymer at 10 and 100 μg/mL. F2 had no influence on differentiation status of keratinocytes and did not exhibit any cytotoxic potential (LDH test). The biological activity of F2 was not dependent on the high molecular weight. Influence of the polysaccharide on the gene expression of specific growth factors, growth factor receptors, signal proteins and marker proteins for skin cell proliferation, and differentiation by RT-PCR could not be shown. Gene array investigations indicated an increased expression of various genes encoding for catabolic enzymes, DNA repair, extracellular matrix proteins, and signal transduction factors. Removal of terminal arabinose residues by α-l-arabinofuranosidase did not influence the activity toward skin cells, while the treatment with β-d-galactosidase yielded an inactive polysaccharide. The FITC-labeled polysaccharide was incorporated in a time-dependent manner into human fibroblasts (laser scanning microscopy) via endosomal transport. This internalization of the polysaccharide was inhibited by Cytochalasin B.  相似文献   

20.
The effect of thalidomide on epidermal growth factor (EGF)-induced cell growth was examined. Thalidomide inhibited EGF-induced cell growth in mouse and human monocytic leukemia cells, RAW 264.7, U937 and THP-1. Thalidomide inhibited EGF-induced phosphorylation of extracellular signal regulated kinase (ERK) 1/2, but not p38 and stress-activated protein kinase (SAPK)/JNK. The phosphorylation of MEK1/2 and Raf at Ser 338 as the upstream molecules of ERK 1/2 was also prevented by thalidomide. Further, it inhibited EGF-induced Ras activation through preventing the transition to GTP-bound active Ras. Thalidomide inhibited the Ras activation induced by lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF) as well as EGF. There was no significant difference in the expression and function of EGF receptor between thalidomide-treated and non-treated cells. Therefore, thalidomide was suggested to inhibit EGF-induced cell growth via inactivation of Ras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号