首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human thymosin beta 4 (TB4) is a small acidic peptide involved in angiogenesis, wound healing, cancer metastasis and cardiac repair. Currently human TB4 is synthesized chemically for research and this is costly. In order to obtain sufficient biologically active human TB4 economically, we cloned and overexpressed this protein in an Escherichia coli system. We also developed a one-step affinity purification method to purify this fusion protein. After the fusion tag was removed from the fusion protein through autohydrolysis by dithiothreitol (DTT), the biological activity and function of this recombinant human TB4 was evaluated by cell proliferation assay using prepared spleen cells and wound assay using a mouse model, respectively. Our data demonstrated that human recombinant TB4 can promote lymphocyte proliferation and differentiation. Further, it can also promote full-thickness cutaneous wound healing in BALB/c mice. To our knowledge, this is the first report of recombinant human TB4 with the ability to promote wound healing.  相似文献   

2.
Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.  相似文献   

3.
创面愈合是由炎性细胞、细胞因子等多种因素共同参与,涉及组织修复、再生、重建的一个复杂有序的病理生理过程。皮肤慢性创面的愈合仍然是临床研究的重点与热点,随着分子生物学的发展,对皮肤创面愈合机制的认识也逐渐深入。Wnt信号通路是一条由Wnt蛋白及其受体、调节蛋白等组成的高度保守的信号通路,参与细胞增殖、凋亡、分化等多种生物学过程。Wnt信号通路作为参与皮肤愈合的信号通路之一,被认为具有调控皮肤及其附属器的发育、诱导皮肤附件的形态发生、调节毛囊的周期生长、促进创面血管新生及上皮重塑等多方面的功能。因此本文试从炎性细胞、成纤维细胞、干细胞、血管新生、表皮新生与毛囊新生等方面对Wnt信号通路与皮肤创面愈合的关系作一综述。  相似文献   

4.
The biological roles of hyaluronan (HA) fragments in angiogenesis acceleration have been investigated recently. Studies have confirmed that oligosaccharides of HA (o-HA) are capable of stimulating neovascularization in vitro and promoting blood flow or angiogenesis in animal models. However, few laboratories have studied the function of o-HA as an exogenous treatment in injured tissue repair in vivo. It is thought that o-HA may lose its activities when used topically in vivo due to its small size, which may be absorbed quickly by the surrounding tissues. In this study, we prepared a special slow-releasing gel that contains a mixture of defined size of o-HA and studied the healing effects of o-HA by topical application to an acute wound model. We report that o-HA complex promotes the repair of tissue injury of a murine excisional dermal wound. The therapy by o-HA was compared with high molecular weight HA (HMW-HA) and the known angiogenesis stimulator, VEGF. At days 6 to 8 after treatment, significant differences were seen in wound closure rates between o-HA and control or HMW-HA groups, in which o-HA showed an increased wound recovery. Histological analysis revealed that increased neo-blood and lymph vessels were formed in wounded tissues treated by o-HA. In addition, treatments of wounds with o-HA resulted in more granulation production, collagen deposition, and fibroblast proliferation. Analysis of gene expression by real-time RT-PCR demonstrated a significant up-regulation of some cytokines or adhesion molecules in o-HA-treated wounds, which corresponds with the increased granulation tissue in these wounds. Our findings suggested that o-HA therapy may be useful in acute wound repair.  相似文献   

5.
α1-Antichymotrypsin (α1-ACT) is a specific inhibitor of leukocyte-derived chymotrypsin-like proteases with largely unknown functions in tissue repair. By examining human and murine skin wounds, we showed that following mechanical injury the physiological repair response is associated with an acute phase response of α1-ACT and the mouse homologue Spi-2, respectively. In both species, attenuated α1-ACT/Spi-2 activity and gene expression at the local wound site was associated with severe wound healing defects. Topical application of recombinant α1-ACT to wounds of diabetic mice rescued the impaired healing phenotype. LC-MS analysis of α1-ACT cleavage fragments identified a novel cleavage site within the reactive center loop and showed that neutrophil elastase was the predominant protease involved in unusual α1-ACT cleavage and inactivation in nonhealing human wounds. These results reveal critical functions for locally acting α1-ACT in the acute phase response following skin injury, provide mechanistic insight into its function during the repair response, and raise novel perspectives for its potential therapeutic value in inflammation-mediated tissue damage.  相似文献   

6.
秦瑞峰  聂鑫  张勇杰  金岩 《现代生物医学进展》2007,7(12):1840-1842,F0003
目的:临床观察组织工程复合皮肤对烧伤整形后需植皮患者的供皮区缺损创面的有效性及安全性。方法:试验选取不同临床中心烧伤整形后需植皮患者,在供皮区部分创面作为试验区应用组织工程复合皮肤覆盖,邻近创面采用盐水纱布替代作为对照区,应用后按常规方法包扎固定。临床试验时间为6个月,治疗期间观察统计患者的创面反应,愈合时间及愈合情况;对组织工程复合皮肤改善创面愈合质量及安全性进行临床评估。根据创面试验组和对照组的创面愈合时间,应用SPSS统计软件对数据进行方差齐性检验,根据检验结果分别进行独立样本t或t’检验。结果:试验共收集有效病例19例。临床观察显示应用后试验区创面无明显免疫排斥及炎性反应,患者自述疼痛明显减轻,试验区创面愈合时间与对照区相比缩短8d,统计学分析有显著性差异。愈后随访部分患者试验区愈合质量好于对照区,应用后患者疼痛、瘢痕形成等不良反应明显减少。结论:结果表明组织工程复合皮肤作为活型皮肤替代物用于医源性皮肤缺损的修复,这为促进供皮区的创面愈合提供了切实可行的方法。  相似文献   

7.
Diabetes is characterized by poor wound healing which currently lacks an efficacious treatment. The innate repair receptor (IRR) is a master regulator of tissue protection and repair which is expressed as a response injury or metabolic stress, including in diabetes. Activation of the IRR might provide benefit for diabetic wound healing. A specific IRR agonist cibinetide was administered in an incisional wound healing model performed mice with genetic diabetes (db+/db+) and compared to the normal wild-type. Animals were treated daily with cibinetide (30 μg/kg/s.c.) or vehicle and euthanized 3, 7, and 14 days after the injury to quantitate vascular endothelial growth factor (VEGF), malondialdehyde (MAL), phospho-Akt (pAkt), phospho e-NOS (p-eNOS), and nitrite/nitrate content within the wound. Additional evaluations included quantification of skin histological change, angiogenesis, scar strength, and time to complete wound closure. Throughout the wound healing process diabetic animals treated with vehicle exhibited increased wound MAL with reduced VEGF, pAkt, peNOS and nitrite/nitrate, all associated with poor re-epitheliziation, angiogenesis, and wound breaking strength. Cibenitide administration significantly improved these abnormalities. The results suggest that cibinetide-mediated IRR activation may represent an interesting strategy to treat diabetes-associated wound healing.  相似文献   

8.
Surgery may be regarded as an angiogenesis-inducing condition since it evokes the release of many angiogenic factors. Regarding the mechanistic overlap between tumor-associated neovascularisation and (physiological) angiogenesis in response to injury and hypoxia, surgery may promote the uncontrolled growth of residual dormant tumor cells. With the advent of anti-angiogenic agents, surgeons will be faced with more patients undergoing surgery for primary and secondary tumors under anti-angiogenic treatment. This could present problems with regard to angiogenesis-dependent phenomena such as wound repair, healing of intestinal anastomoses and liver regeneration. In this review we will discuss these matters from a biomedical and clinical point of view.  相似文献   

9.
Cutaneous wound healing is a dynamic, complex, and well-organized process that requires the orchestration of many different cell types and cellular processes. Transforming growth factor β1 is an important factor that plays a key role during wound healing. Amphibian skin has been proven to possess excellent wound healing ability, whilst no bioactive substrate related to it has ever been identified. Here, a potential wound healing-promoting peptide (AH90, ATAWDFGPHGLLPIRPIRIRPLCG) was identified from the frog skin of Odorrana grahami. It showed potential wound healing-promoting activity in a murine model with full thickness dermal wound. AH90 promoted release of transforming growth factor β1 through activation of nuclear factor-κB and c-Jun NH2-terminal kinase mitogen-activated protein kinases signaling pathways, while inhibitors of nuclear factor-κB and c-Jun NH2-terminal kinase inhibited the process. In addition, the effects of AH90 on Smads family proteins, key regulators in transforming growth factor β1 signaling pathways, could also be inhibited by transforming growth factor β1 antibody. Altogether, this indicated that AH90 promoted wound healing by inducing the release of transforming growth factor β1. This current study may facilitate the understanding of effective factors involved in the wound repair of amphibians and the underlying mechanisms as well. Considering its favorable traits as a small peptide that greatly promoting generation of endogenous wound healing agents (transforming growth factor β1) without mitogenic effects, AH90 might be an excellent template for the future development of novel wound-healing agents.  相似文献   

10.
柏书博  王国栋  吴洋 《生物磁学》2011,(17):3370-3372,3351
创伤愈合是一个复杂的生物学过程,涉及炎症细胞,修复细胞、细胞外基质以及细胞因子之间的相互作用。传统将这一过程分为炎症期、增值期、组织重构三个相互重叠的时期。细胞因子是一类对细胞生长、分化有明显调控作用的小分子生物活性多肽。是细胞与细胞外基质间重要的信号传导物。多种生长因子被释放到伤口部位被认为是创伤愈合所必需的。本文就细胞因子对创伤愈合的促进作用、细胞因子相互之间的协同作用,以及应用前景作以概述。  相似文献   

11.
Diabetes mellitus is an epidemic multisystemic chronic disease that frequently is complicated by complex wound infections. Innovative topical antimicrobial therapy agents are potentially useful for multimodal treatment of these infections. However, an appropriately standardized in vivo model is currently not available to facilitate the screening of these emerging products and their effect on wound healing. To develop such a model, we analyzed, tested, and modified published models of wound healing. We optimized various aspects of the model, including animal species, diabetes induction method, hair removal technique, splint and dressing methods, the control of unintentional bacterial infection, sampling methods for the evaluation of bacterial burden, and aspects of the microscopic and macroscopic assessment of wound healing, all while taking into consideration animal welfare and the '3Rs' principle. We thus developed a new wound infection model in rats that is optimized for testing topical antimicrobial therapy agents. This model accurately reproduces the pathophysiology of infected diabetic wound healing and includes the current standard treatment (that is, debridement). The numerous benefits of this model include the ready availability of necessary materials, simple techniques, high reproducibility, and practicality for experiments with large sample sizes. Furthermore, given its similarities to infected-wound healing and treatment in humans, our new model can serve as a valid alternative for applied research.  相似文献   

12.
Summary. A complex series of events involving inflammation, cell migration and proliferation, ECM stabilisation and remodelling, neovascularisation and apoptosis are crucial to the tissue response to injury. Wound healing involves the dynamic interactions of multiple cells types with components of the extracellular matrix (ECM) and growth factors. Impaired wound healing as a consequence of aging, injury or disease may lead to serious disabilities and poor quality of life. Abnormal wound healing may also lead to inflammatory and fibrotic conditions (such as renal and pulmonary fibrosis). Therefore identification of the molecular events underlying wound repair is essential to develop new effective treatments in support to patients and the wound care sector.Recent advances in the understating of the physiological functions of tissue transglutaminase a multi functional protein cross-linking enzyme which stabilises tissues have demonstrated that its biological activities interrelate with wound healing phases at multiple levels. This review describes our view of the function of tissue transglutaminase in wound repair under normal and pathological situations and highlights its potential as a strategic therapeutic target in the development of new treatments to improve wound healing and prevent scarring.  相似文献   

13.
Marine species are increasingly important as a source of specific biological active metabolites. Marine species comprise almost half of global biodiversity. Oceans and sea are thus the biggest source of positive natural compounds that could be utilized in the pharmaceutical industry as functional constituents. In the present study was to find out the wound healing property of the bioactive compounds from Micrococcus sp. OUS9 isolated from marine source. The in vivo wound healing activity was studied using excision wound model. The KLUF 10 and KLUF13 ointment was prepared and used to determine wound healing activity in albino rats. Topical application of the ointment enhanced the contraction of wound in contrast with rat control group. KLUF13 had shown strong healing ability in wounds and had a positive influence on the various phases of wound repair.  相似文献   

14.
Wound healing in diabetes is a complex process, characterised by a chronic inflammation phase. The exact mechanism by which this occurs is not fully understood, and whilst several treatments for healing diabetic wounds exist, very little research has been conducted towards the causes of the extended inflammation phase. We describe a mathematical model which offers a possible explanation for diabetic wound healing in terms of the distribution of macrophage phenotypes being altered in the diabetic patient compared to normal wound repair. As a consequence of this, we put forward a suggestion for treatment based on rectifying the macrophage phenotype imbalance.  相似文献   

15.
Topical application of platelet-derived growth factor-BB (PDGF-BB) is considered to accelerate tissue repair of impaired chronic wounds. However, the vast literature is plagued with conflicting reports of its efficacy in animal models and this is often influenced by a wide array of experimental variables making it difficult to compare the results across the studies. To mitigate the confounding variables that influence the efficacy of topically applied PDGF-BB, we used a controlled full thickness splinted excisional wound model in db/db mice (type 2 diabetic mouse model) for our investigations. A carefully-defined silicone-splinted wound model, with reduced wound contraction, controlled splint and bandage maintenance, allowing for healing primarily by reepithelialization was employed. Two splinted 8 mm dorsal full thickness wounds were made in db/db mice. Wounds were topically treated once daily with either 3 µg PDGF-BB in 30 µl of 5% PEG-PBS vehicle or an equal volume of vehicle for 10 days. Body weights, wound contraction, wound closure, reepithelialization, collagen content, and wound bed inflammation were evaluated clinically and histopathologically. The bioactivity of PDGF-BB was confirmed by in vitro proliferation assay. PDGF-BB, although bioactive in vitro, failed to accelerate wound healing in vivo in the db/db mice using the splinted wound model. Considering that the predominant mechanism of wound healing in humans is by re-epeithelialization, the most appropriate model for evaluating therapeutics is one that uses splints to prevent excessive wound contraction. Here, we report that PDGF-BB does not promote wound closure by re-epithelialization in a murine splinted wound model. Our results highlight that the effects of cytoactive factors reported in vivo ought to be carefully interpreted with critical consideration of the wound model used.  相似文献   

16.
外泌体是直径在30-100 nm左右的囊泡结构。作为一种活细胞分泌的亚细胞成分,外泌体广泛参与细胞之间的交流,并可以作为干细胞的旁分泌因子来发挥生物学效应。研究发现外泌体可以参与皮肤组织修复与再生的各个过程,通过促进皮肤细胞的增殖迁移,促进血管新生,调节免疫反应来促进创伤愈合与皮肤组织再生,为进一步实现无细胞治疗提供了新的实现途径。对于某些慢性创面,例如糖尿病性皮肤溃疡等也有较好的治疗效果。本文就外泌体在皮肤修复与再生中作用的研究进展做一综述。  相似文献   

17.
18.
Bone marrow (BM) derived vascular precursor cells (BM-PC, endothelial progenitors) are involved in normal and malignant angiogenesis, in ischemia and in wound healing. However, the mechanisms by which BM-PC stimulate the pre-existing endothelial cells at sites of vascular remodelling/recovery, and their contribution towards the formation of new blood vessels are still undisclosed. In the present report, we exploited the possibility that members of the Notch signalling pathway, expressed by BM-PC during endothelial differentiation, might regulate their pro-angiogenic or pro-wound healing properties. We demonstrate that Notch pathway modulates the adhesion of BM-PC to extracellular matrix (ECM) in vitro via regulation of integrin alpha3beta1; and that Notch pathway inhibition on BM-PC impairs their capacity to stimulate endothelial cell tube formation on matrigel and to promote endothelial monolayer recovery following wounding in vitro. Moreover, we show that activation of Notch pathway on BM-PC improved wound healing in vivo through angiogenesis induction. Conversely, inoculation of BM-PC pre-treated with a gamma secretase inhibitor (GSI) into wounded mice failed to induce angiogenesis at the wound site and did not promote wound healing, presumably due to a lower frequency of BM-PC at the wound area. Our data suggests that Notch pathway regulates BM-PC adhesion to ECM at sites of vascular repair and that it also regulates the capacity of BM-PC to stimulate angiogenesis and to promote wound healing. Drug targeting of the Notch pathway on BM-PC may thus represent a novel strategy to modulate neo-angiogenesis and vessel repair.  相似文献   

19.
Delayed wound healing is a chronic problem in opioid drug abusers. We investigated the role chronic morphine plays on later stages of wound healing events using an angiogenesis model. Our results show that morphine treatment resulted in a significant decrease in inflammation induced angiogenesis. To delineate the mechanisms involved we investigate the role of hypoxia inducible factor 1 alpha (HIF-1 alpha), a potent inducer of angiogenic growth factor. Morphine treatment resulted in a significant decrease in the expression and nuclear translocation of HIF-1 alpha with a concurrent suppression in vascular endothelial growth factor (VEGF) synthesis. Cells of the innate immune system play a dominant role in the angiogenic process. Morphine treatment inhibited early recruitment of both neutrophils and monocytes towards an inflammatory signal with a significant decrease in the monocyte chemoattractant MCP-1. Taken together, our studies show that morphine regulates the wound repair process on multiple levels. Morphine acts both directly and indirectly in suppressing angiogenesis.  相似文献   

20.
创伤愈合是一个复杂的生物学过程,涉及炎症细胞,修复细胞、细胞外基质以及细胞因子之间的相互作用。传统将这一过程分为炎症期、增值期、组织重构三个相互重叠的时期。细胞因子是一类对细胞生长、分化有明显调控作用的小分子生物活性多肽,是细胞与细胞外基质间重要的信号传导物。多种生长因子被释放到伤口部位被认为是创伤愈合所必需的。本文就细胞因子对创伤愈合的促进作用、细胞因子相互之间的协同作用,以及应用前景作以概述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号