首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Upregulation of heparanase has been reported in an increasing number of human cancer tissues. However, the level of salivary heparanase and its clinical significance in patients with salivary gland tumors remain unclear.

Methods

Salivary heparanase levels in patients with salivary gland tumors were detected using enzyme-linked immunosorbent assays (ELISAs) and the clinical significance was evaluated by analyzing the correlations among salivary heparanase levels, clinicopathological parameters, and clinical outcomes.

Results

The levels of salivary heparanase were significantly higher in patients with malignant salivary gland tumors than in benign tumors and normal controls (P<0.0001). High salivary heparanase levels were positively correlated with increased lymph node metastasis (P = 0.0235) and poorer tumor node metastasis stage (TNM) (P = 0.0183). Survival analyses revealed that high salivary heparanase levels were associated with worse overall survival (P = 0.0023) and disease-free survival (DFS) (P = 0.0025).

Conclusions

The study shows that salivary heparanase levels, as detected by the ELISAs, can be used to diagnose and provide an accurate prognosis for malignant salivary gland tumors. Salivary heparanase level was an independent predictor in patients with malignant salivary gland tumors.  相似文献   

2.
Nestin-Cre mice express Cre recombinase under control of the rat nestin promoter and central nervous system (CNS) enhancer. While endogenous Nestin is expressed in some other tissues including the pituitary gland, Nestin-Cre mice induce recombination predominantly in the CNS. For this reason, they have been widely used to explore gene function or cell fate in the latter. Pituitary hormonal deficiencies, or hypopituitarism, are associated with a wide range of symptoms and with a significant morbidity. These can have a neural and/or a pituitary origin as the gland''s secretions are controlled by the hypothalamus. We report here that Nestin-Cre mice themselves are affected by mild hypopituitarism. Hence, physiological consequences are expected, especially in combination with defects resulting from Cre mediated deletion of any gene under investigation. To further investigate the origin of this phenotype, we re-examined the activity of the transgene. We compared it with expression of Nestin itself in the context of the hypothalamo-pituitary axis, especially in the light of a recent report showing pituitary Nestin-Cre activity, which contrasts with previous data. Our results disagree with those of this recent study and do not support the claim that Nestin positive cells are present in the pituitary anlagen, the Rathke''s pouch (RP). Moreover we did not observe any significant activity in the post-natal pituitary, in agreement with the initial report.  相似文献   

3.
Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout (AGT+/−) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of AGT+/− EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in AGT+/− EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-1α and -2α were downregulated in AGT+/− early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-1α were suppressed in AGT+/− EPCs. In AGT+/− mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.  相似文献   

4.
5.
Squamous cell carcinoma is the second most common form of skin cancer with the incidence expected to double over the next 20 years. Inflammation is believed to be a critical component in skin cancer progression. Therefore, understanding genes involved in the regulation of inflammatory pathways is vital to the design of targeted therapies. Numerous studies show cyclooxygenases (COXs) play an essential role in inflammation-associated cancers. Tpl2 (MAP3K8) is a protein kinase in the MAP Kinase signal transduction cascade. Previous research using a two-stage skin carcinogenesis model revealed that Tpl2 −/− mice have significantly higher tumor incidence and inflammatory response than wild-type (WT) controls. The current study investigates whether cyclooxygenase-2 (COX-2) and COX-2- regulated prostaglandins and prostaglandin receptors drive the highly tumorigenic state of Tpl2−/− mice by investigating the relationship between Tpl2 and COX-2. Keratinocytes from newborn WT or Tpl2 −/− mice were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for various times over 24 hours. Western analysis revealed significant differences in COX-2 and COX-2 dependent prostanoids and prostanoid receptors. Additionally, in vivo experiments confirmed that COX-2 and COX-2 downstream factors were elevated in TPA-treated Tpl2−/− skin, as well as in papillomas from Tpl2 −/− mice. Use of the selective COX-2 inhibitor Celecoxib showed the increased tumorigenesis in the Tpl2−/− mice to primarily be mediated through COX-2. These experiments illustrate COX-2 induction in the absence of Tpl2 may be responsible for the increased tumorigenesis found in Tpl2 −/− mice. Defining the relationship between Tpl2 and COX-2 may lead to new ways to downregulate COX-2 through the modulation of Tpl2.  相似文献   

6.
Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43−/− salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43−/− samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43−/− phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis.  相似文献   

7.
Previous studies on Serca2 knockout (KO) mice showed that cardiac function is sustained in vivo for several weeks after knockout, whereas SERCA protein levels decrease and calcium dynamics are significantly impaired. In this study, we reconcile observed cellular and organ level contractile function using a cardiac multiscale model. We identified and quantified the changes in cellular function that are both consistent with observations and able to compensate for the decrease in SERCA. Calcium transients were used as input for multiscale computational simulations to predict whole-organ response. Although this response matched experimental pressure-volume (PV) measurements in healthy mice, the reduced magnitude calcium transients observed in KO cells were insufficient to trigger ventricular ejection. To replicate the effects of elevated catecholamine levels observed in vivo, cells were treated with isoproterenol. Incorporation of the resulting measured β-adrenergically stimulated calcium transients into the model resulted in a close match with experimental PV loops. Changes in myofilament properties, when considered in isolation, were not able to increase tension development to levels consistent with measurements, further confirming the necessity of a high β-adrenergic state. Modeling additionally indicated that increased venous return observed in the KO mice helps maintain a high ejection fraction via the Frank-Starling effect. Our study shows that increased β-adrenergic stimulation is a potentially highly significant compensatory mechanism by which cardiac function is maintained in Serca2 KO mice, producing the increases in both systolic and diastolic calcium, consistent with the observed contractile function observed in experimental PV measurements.  相似文献   

8.

Background

Previous studies have shown that disruption of GABA signaling in mice via mutations in the Gad1, Gabrb3 or Viaat genes leads to the development of non-neural developmental defects such as cleft palate. Studies of the Gabrb3 and Gad1 mutant mice have suggested that GABA function could be required either in the central nervous system or in the palate itself for normal palatogenesis.

Methodology/Principal Findings

To further examine the role of GABA signaling in palatogenesis we used three independent experimental approaches to test whether Gad1 or Viaat function is required in the fetal CNS for normal palate development. We used oral explant cultures to demonstrate that the Gad1 and Viaat mutant palates were able to undergo palatogenesis in culture, suggesting that there is no defect in the palate tissue itself in these mice. In a second series of experiments we found that the GABAA receptor agonist muscimol could rescue the cleft palate phenotype in Gad1 and Viaat mutant embryos. This suggested that normal multimeric GABAA receptors in the CNS were necessary for normal palatogenesis. In addition, we showed that CNS-specific inactivation of Gad1 was sufficient to disrupt palate development.

Conclusions/Significance

Our results are consistent with a role for Gad1 and Viaat in the central nervous system for normal development of the palate. We suggest that the alterations in GABA signaling lead to non-neural defects such as cleft palate as a secondary effect due to alterations in or elimination of fetal movements.  相似文献   

9.
10.
11.
Abstract: The neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been proposed to be attenuated by sequestration into intracellular vesicles by the vesicular monoamine transporter (VMAT2). The purpose of this study was to determine if mice with genetically reduced levels of VMAT2 (heterozygote knockout; VMAT2 +/−) were more vulnerable to MPTP. Striatal dopamine (DA) content, the levels of DA transporter (DAT) protein, and the expression of glial fibrillary acidic protein (GFAP) mRNA, a marker of gliosis, were assessed as markers of MPTP neurotoxicity. In all parameters measured VMAT2 +/− mice were more sensitive than their wild-type littermates (VMAT2 +/+). Administration of MPTP (7.5, 15, or 30 mg/kg, b.i.d.) resulted in dose-dependent reductions in striatal DA levels in both VMAT2 +/− and VMAT2 +/+ animals, but the neurotoxic potency of MPTP was approximately doubled in the VMAT2 +/− mice: 59 versus 23% DA loss 7 days after 7.5 mg/kg dose for VMAT2 +/− and VMAT2 +/+ mice, respectively. Dopaminergic nerve terminal integrity, as assessed by DAT protein expression, also revealed more drastic reductions in the VMAT2 +/− mice: 59 versus 35% loss at 7.5 mg/kg and 95 versus 58% loss at 15 mg/kg for VMAT2 +/− and VMAT2 +/+ mice, respectively. Expression of GFAP mRNA 2 days after MPTP was higher in the VMAT2 +/− mice than in the wild-type: 15.8- versus 7.8-fold increase at 7.5 mg/kg and 20.1- versus 9.6-fold at 15 mg/kg for VMAT2 +/− and VMAT2 +/+ mice, respectively. These observations clearly demonstrate that VMAT2 +/− mice are more susceptible to the neurotoxic effects of MPTP, suggesting that VMAT2-mediated sequestration of the neurotoxin into vesicles may play an important role in attenuating MPTP toxicity in vivo.  相似文献   

12.
13.
该研究旨在探讨外源性Runx2过表达对小鼠成釉细胞Runx2敲除导致的釉质缺陷的挽救作用。采用免疫组化验证Runx2在Runx2条件性敲除且人源性Runx2过表达小鼠成釉细胞中的表达。HE染色观察成熟期成釉细胞形态及釉质基质蛋白残余。用体视显微镜和扫描电镜观察小鼠牙齿表面形态和釉柱结构。结果显示,RUNX2蛋白在出生后10天龄Tg;cKO小鼠成熟早期成釉细胞中成功表达。15天龄Tg;cKO小鼠与cKO小鼠相比,成熟晚期成釉细胞形态及排列未见明显改善,但釉质基质蛋白残余量明显减少。3月龄Tg;cKO小鼠与cKO小鼠相比,釉质磨耗减轻,釉柱间孔隙减少,釉柱排列更规则。该研究结果表明,人源性Runx2过表达可部分挽救小鼠成釉细胞Runx2敲除导致的釉质缺陷。  相似文献   

14.
Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs.  相似文献   

15.
Dolichol is a required cofactor for protein glycosylation, the most common posttranslational modification modulating the stability and biological activity of proteins in all eukaryotic cells. We have identified and characterized two genes, PPRD1 and -2, which are orthologous to human SRD5A3 (steroid 5α reductase type 3) and encode polyprenol reductases responsible for conversion of polyprenol to dolichol in Arabidopsis thaliana. PPRD1 and -2 play dedicated roles in plant metabolism. PPRD2 is essential for plant viability; its deficiency results in aberrant development of the male gametophyte and sporophyte. Impaired protein glycosylation seems to be the major factor underlying these defects although disturbances in other cellular dolichol-dependent processes could also contribute. Shortage of dolichol in PPRD2-deficient cells is partially rescued by PPRD1 overexpression or by supplementation with dolichol. The latter has been discussed as a method to compensate for deficiency in protein glycosylation. Supplementation of the human diet with dolichol-enriched plant tissues could allow new therapeutic interventions in glycosylation disorders. This identification of PPRD1 and -2 elucidates the factors mediating the key step of the dolichol cycle in plant cells which makes manipulation of dolichol content in plant tissues feasible.  相似文献   

16.
Studies of homozygous PAR2 gene knockout mice have described a mix of phenotypic effects in vitro and in vivo. However, there have been few studies of PAR2 heterozygous (wild-type/knockout; PAR2-HET) mice. The phenotypes of many hemi and heterozygous transgenic mice have been described as intermediates between those of wild-type and knockout animals. In our study we aimed to determine the effects of intermediary par2 gene zygosity on vascular tissue responses to PAR2 activation. Specifically, we compared the vasodilator effectiveness of the PAR2 activating peptide 2-furoyl-LIGRLO-amide in aortas of wild-type PAR2 homozygous (PAR2-WT) and PAR2-HET mice. In myographs under isometric tension conditions, isolated aortic rings were contracted by alpha 1-adrenoeceptor agonist (phenylephrine), and thromboxane receptor agonist (U46619) and then relaxation responses by the additions of 2-furoyl-LIGRLO-amide, acetylcholine, and nitroprusside were recorded. A Schild regression analysis of the inhibition by a PAR2 antagonist (GB-83) of PAR2 agonist-induced aortic ring relaxations was used to compare receptor expression in PAR2-WT to PAR2-HET. PAR2 mRNA in aortas was measured by quantitative real-time PCR. In aortas contracted by either phenylephrine or U46619, the maximum relaxations induced by 2-furoyl-LIGRLO-amide were less in PAR2-HET than in the gender-matched PAR2-WT. GB-83 was 3- to 4-fold more potent for inhibition of 2fly in PAR2-HET than in PAR2-WT. PAR2 mRNA content of aortas from PAR2-HET was not significantly different than in PAR2-WT. Acetylcholine- and nitroprusside-induced relaxations of aortas from PAR2-HET were not significantly different than in PAR2-WT and PAR2 knockout. An interesting secondary finding was that relaxations induced by agonists of PAR2 and muscarinic receptors were larger in females than in males. We conclude that the lower PAR2-mediated responses in PAR2-HET aortas are consistent with evidence of a lower quantity of functional receptor expression, despite the apparently normal PAR2 mRNA content in PAR2-HET aortas.  相似文献   

17.
Hematopoietic stem cells (HSCs) represent one of the first recognized somatic stem cell types. As such, nearly 200 genes have been examined for roles in HSC function in knockout mice. In this review, we compile the majority of these reports to provide a broad overview of the functional modules revealed by these genetic analyses and highlight some key regulatory pathways involved, including cell cycle control, Tgf-β signaling, Pten/Akt signaling, Wnt signaling, and cytokine signaling. Finally, we propose recommendations for characterization of HSC function in knockout mice to facilitate cross-study comparisons that would generate?a more cohesive picture of HSC biology.  相似文献   

18.
Cotton leaf curl virus (CLCuV) (Gemininiviridae: Begomovirus) is the causative agent of leaf curl disease in cotton plants (Gossypium hirsutum). CLCuV is exclusively transmitted by the whitefly species B. tabaci (Gennadius) (Hemiptera: Alerodidae). B. tabaci contains several biotypes which harbor dissimilar bacterial endo-symbiotic community. It is reported that these bacterial endosymbionts produce a 63 kDa chaperon GroEL protein which binds to geminivirus particles and protects them from rapid degradation in gut and haemolymph. In biotype B, GroEL protein of Hamiltonella has been shown to interact with Tomato yellow leaf curl virus (TYLCV). The present study was initiated to find out whether endosymbionts of B. tabaci are similarly involved in CLCuV transmission in Sriganganagar (Rajasthan), an area endemic with cotton leaf curl disease. Biotype and endosymbiont diversity of B. tabaci were identified using MtCO1 and 16S rDNA genes respectively. Analysis of our results indicated that the collected B. tabaci population belong to AsiaII genetic group and harbor the primary endosymbiont Portiera and the secondary endosymbiont Arsenophonus. The GroEL proteins of Portiera and Arsenophonus were purified and in-vitro interaction studies were carried out using pull down and co-immunoprecipitation assays. In-vivo interaction was confirmed using yeast two hybrid system. In both in-vitro and in-vivo studies, the GroEL protein of Arsenophonus was found to be interacting with the CLCuV coat protein. Further, we also localized the presence of Arsenophonus in the salivary glands and the midgut of B. tabaci besides the already reported bacteriocytes. These results suggest the involvement of Arsenophonus in the transmission of CLCuV in AsiaII genetic group of B. tabaci.  相似文献   

19.

Purpose

The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse.

Methods

Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed.

Results

Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice.

Conclusions

Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.  相似文献   

20.
L. Berghella  P. Dimitri 《Genetics》1996,144(1):117-125
This paper reports a cytogenetic and molecular study of the structural and functional organization of the Drosophila melanogaster chromocenter. The relations between mitotic (constitutive) heterochromatin and α- and β-heterochromatin are not fully understood. In the present work, we have studied the polytenization of the rolled (rl) locus, a 100-kb genomic region that maps to the proximal heterochromatin of chromosome 2 and has been previously thought to contribute to α-heterochromatin. We show that rolled undergoes polytenization in salivary gland chromosomes to a degree comparable to that of euchromatic genes, despite its deep heterochromatic location. In contrast, both the Bari-1 sequences and the AAGAC satellite repeats, located respectively to the left and right of rl, are severely underrepresented and thus both appear to be α-heterochromatic. In addition, we found that rl is transcribed in polytene tissues. Together, the results reported here indicate that functional sequences located within the proximal constitutive heterochromatin can undergo polytenization, contributing to the formation of β-heterochromatin. The implications of this finding to chromocenter structure are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号