首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A high consumption of polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, is atheroprotective. PUFAs incorporation into membrane phospholipids alters the functionality of membrane proteins. We studied the consequences of the in vitro supplementation of several PUFAs on the FA profiles and on ABCA1-dependent cholesterol efflux capacities from cholesterol-loaded macrophages. Arachidonic acid (AA, C20:4 n-6) and, to a lesser extent, eicosapentaenoic acid (EPA, C20:5 n-3), dose-dependently impaired cholesterol efflux from cholesterol-loaded J774 mouse macrophages without alterations in ABCA1 expression, whereas docosahexaenoic acid (DHA, C22:6 n-3) had no impact. AA cells exhibited higher proportions of arachidonic acid and adrenic acid (C22:4 n-6), its elongation product. EPA cells exhibited slightly higher proportions of EPA associated with much higher proportions of docosapentaenoic acid (C22:5 n-3), its elongation product and with lower proportions of AA. Conversely, both EPA and DHA and, to a lesser extent, AA decreased cholesterol efflux from cholesterol-loaded primary human macrophages (HMDM). The differences observed in FA profiles after PUFA supplementations were different from those observed for the J774 cells. In conclusion, we are the first to report that AA and EPA, but not DHA, have deleterious effects on the cardioprotective ABCA1 cholesterol efflux pathway from J774 foam cells. Moreover, the membrane incorporation of PUFAs does not have the same impact on cholesterol efflux from murine (J774) or human (HMDM) cholesterol-loaded macrophages. This finding emphasizes the key role of the cellular model in cholesterol efflux studies and may partly explain the heterogeneous literature data on the impact of PUFAs on cholesterol efflux.  相似文献   

4.
5.
Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA) on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa) MCF-7 and T47D cells. 17 β-estradiol (E2) enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM) treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2). E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0) as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear) estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1) may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.  相似文献   

6.
Treatment with the ω-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effects of DHA and EPA on mitochondria function. We compared the effects of dietary supplementation with the ω-3 PUFAs DHA and EPA on cardiac mitochondrial phospholipid fatty acid composition and Ca2+-induced MPTP opening. Rats were fed a standard lab diet with either normal low levels of ω-3 PUFA, or DHA or EPA at 2.5% of energy intake for 8 weeks, and cardiac mitochondria were isolated and analyzed for Ca2+-induced MPTP opening and phospholipid fatty acyl composition. DHA supplementation increased both DHA and EPA and decreased ARA in mitochondrial phospholipid, and significantly delayed MPTP opening as assessed by increased Ca2+ retention capacity and decreased Ca2+-induced mitochondria swelling. EPA supplementation increased EPA in mitochondrial phospholipids, but did not affect DHA, only modestly lowered ARA, and did not affect MPTP opening. In summary, dietary supplementation with DHA but not EPA, profoundly altered mitochondrial phospholipid fatty acid composition and delayed Ca2+-induced MPTP opening.  相似文献   

7.
This study was designed to evaluate the effects of individual dietary long-chain n-3 polyunsaturated fatty acids (LCPUFA) on hypertension and cardiac consecutive disorders in spontaneously hypertensive rats (SHR) as compared to Wistar-Kyoto rats (WKY). Rats were fed for 2 months an eicosapentaenoic (EPA)- or docosahexaenoic acid (DHA)-rich diet (240 mg/day) or an n-3 PUFA-free diet. Male SHR (n=6), implanted with cardiovascular telemetry devices, were housed in individual cages for continuous measurements of cardiovascular parameters (blood pressure (BP) and heart rate (HR)) during either activity or rest periods, ECG were recorded during the quiet period. The n-6 PUFA upstream of arachidonic acid was affected in SHR tissues. The cardiac phospholipid fatty acid profile was significantly affected by dietary DHA supply, and EPA in a very lower extent, since DHA only was incorporated in the membranes instead of n-6 PUFAs. Endothelium n-6 PUFA content increased in all SHR groups. Compared to WKY, linoleic acid content decreased in both studied tissues. Cardiac noradrenalin decreased while the adrenal catecholamine stores decreased in SHR as compared to WKY. Both n-3 PUFA supply induced a decrease of adrenal catecholamine stores. Nevertheless after 6 weeks, DHA but not EPA induced a lowering-blood pressure effect and shortened the QT interval in SHR, most probably through its tissue enrichment and a specific effect on adrenergic function. Dietary DHA supply retards blood pressure development and has cardioprotective effect. These findings, showing the cardioprotective effects of DHA in living animals, were obtained in SHR, but may relate to essential hypertension in humans.  相似文献   

8.
Zhu G  Chen H  Wu X  Zhou Y  Lu J  Chen H  Deng J 《Transgenic research》2008,17(4):717-725
The functions of polyunsaturated fatty acids (PUFAs) have been widely investigated. In mammals, levels of n-3 PUFAs are relatively low compared to those of n-6 PUFAs. Either a lack of n-3 PUFAs or an excess of n-6 PUFAs could potentially cause health problems in humans. Hence, methods to increase the amount of n-3 PUFAs in diet have been intensely sought. In this study, we demonstrated that the n-3 fatty acid desaturase gene (sFat-1) synthesized from revised and optimized codons based on roundworm Caenorhabditis briggsae genomic gene for enhanced expression in mammals was successfully expressed in Chinese hamster ovary (CHO) cells and significantly elevated cellular n-3 PUFA contents. We generated sFat-1 transgenic mice by introducing mammal expression vector DNAs containing the sFat-1 gene into regular mice through the method of microinjection. Fatty acid compositions were then altered and the levels of docosahexaenoic acid (DHA, 22:6n-3) and docosapentaenoic acid (DPA, 22:5n-3) were greatly increased in these transgenic mice. Various types of tissues in the transgenic mice produced many types of n-3 PUFAs, such as alpha-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), DPA, and DHA, for example, muscle tissues of the transgenic mice contained 12.2% DHA, 2.0% DPA, and 23.1% total n-3 PUFAs. These research results demonstrated that the synthesized sFat-1 gene with modified and optimized codons from C. briggsae possess functional activity and greater capability of producing n-3 PUFAs, especially DHA and DPA, in transgenic mice.  相似文献   

9.
10.
Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H2O2-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.  相似文献   

11.
Specialized proresolving mediators (SPMs) induce resolution of inflammation. SPMs are derivatives of n-3 and n-6 PUFAs and may mediate their beneficial effects. It is unknown whether supplementation with PUFAs influences the production of SPMs. Alzheimer’s disease (AD) is associated with brain inflammation and reduced levels of SPMs. The OmegAD study is a randomized, double-blind, and placebo-controlled clinical trial on AD patients, in which placebo or a supplement of 1.7 g DHA and 0.6 g EPA was taken daily for 6 months. Plasma levels of arachidonic acid decreased, and DHA and EPA levels increased after 6 months of n-3 FA treatment. Peripheral blood mononuclear cells (PBMCs) were obtained before and after the trial. Analysis of the culture medium of PBMCs incubated with amyloid-β 1–40 showed unchanged levels of the SPMs lipoxin A4 and resolvin D1 in the group supplemented with n-3 FAs, whereas a decrease was seen in the placebo group. The changes in SPMs showed correspondence to cognitive changes. Changes in the levels of SPMs were positively correlated to changes in transthyretin. We conclude that supplementation with n-3 PUFAs for 6 months prevented a reduction in SPMs released from PBMCs of AD patients, which was associated with changes in cognitive function.  相似文献   

12.
Marine-derived n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been shown to inhibit mammary carcinogenesis. However, evidence regarding plant-based α-linolenic acid (ALA), the major n-3 PUFA in the Western diet, remains equivocal. The objective of this study was to examine the effect of lifelong exposure to plant- or marine-derived n-3 PUFAs on pubertal mammary gland and tumor development in MMTV-neu(ndl)-YD5 mice. It is hypothesized that lifelong exposure to n-3 PUFA reduces terminal end buds during puberty leading to delayed tumor onset, volume and multiplicity. It is further hypothesized that plant-derived n-3 PUFAs will exert dose-dependent effects. Harems of MMTV-FVB males were bred with wild-type females and fed either a (1) 10% safflower (10% SF, n-6 PUFA, control), (2) 10% flaxseed (10% FS), (3) 7% safflower plus 3% flaxseed (3% FS) or (4) 7% safflower plus 3% menhaden (3% FO) diet. Female offspring were maintained on parental diets. Compared to SF, 10% FS and 3% FO reduced (P<.05) terminal end buds at 6 weeks and tumor volume and multiplicity at 20 weeks. A dose-dependent reduction of tumor volume and multiplicity was observed in mice fed 3% and 10% FS. Antitumorigenic effects were associated with altered HER2, pHER-2, pAkt and Ki-67 protein expression. Compared to 10% SF, 3% FO significantly down-regulated expression of genes involved in eicosanoid synthesis and inflammation. From this, it can be estimated that ALA was 1/8 as potent as EPA+DHA. Thus, marine-derived n-3 PUFAs have greater potency versus plant-based n-3 PUFAs.  相似文献   

13.
Isotope feeding studies report a wide range of conversion fractions of dietary shorter-chain polyunsaturated fatty acids (PUFAs) to long-chain PUFAs, which limits assessing nutritional requirements and organ effects of arachidonic (AA, 20:4n-6) and docosahexaenoic (DHA, 22:6n-3) acids. In this study, whole-body (largely liver) steady-state conversion coefficients and rates of circulating unesterified linoleic acid (LA, 18:2n-6) to esterified AA and other elongated n-6 PUFAs were quantified directly using operational equations, in unanesthetized adult rats on a high-DHA but AA-free diet, using 2 h of intravenous [U-13C]LA infusion. Unesterified LA was converted to esterified LA in plasma at a greater rate than to esterified γ-linolenic (γ-LNA, 18:3n-6), eicosatrienoic acid (ETA, 20:3n-6), or AA. The steady-state whole-body synthesis-secretion (conversion) coefficient to AA equaled 5.4 × 10−3 min−1, while the conversion rate (coefficient × concentration) equaled 16.1 μmol/day. This rate exceeds the reported brain AA consumption rate by 27-fold. As brain and heart cannot synthesize significant AA from circulating LA, liver synthesis is necessary to maintain their homeostatic AA concentrations in the absence of dietary AA. The heavy-isotope intravenous infusion method could be used to quantify steady-state liver synthesis-secretion of AA from LA under different conditions in rodents and in humans.  相似文献   

14.
n-3 polyunsaturated fatty acids (PUFAs) have been described to have beneficial effects on brain development and in the prevention and treatment of brain damage. C6 glioma cells were incubated with 100 microM of either C20:4n-6 (ARA), or C20:5n-3 (EPA), or C22:6n-3 (DHA) for different time periods to assess whether these acids altered the cellular oxidative state. The ARA and EPA were promptly metabolised to C22:4n-6 and C22:5n-3, respectively, whereas DHA treatment simply increased the amount of DHA in the cells. Cell viability was not affected by ARA, while a cytotoxic effect was observed 72 h after n-3 PUFAs supplementation. The levels of reactive oxygen species and thiobarbituric acid-reactive substances were significantly higher in DHA-treated cells than in EPA- and ARA-treated groups. This modification in the oxidative cellular status was also highlighted by a significant increase in catalase activity and a decrease in glutathione content in DHA-supplemented cells. Glucose-6-phosphate dehydrogenase activity, an enzyme involved in redox regulation, and O2*- release were significantly increased both in EPA and DHA groups. The effect of DHA was more severe than that of EPA. No significant changes were observed in the ARA group with respect to untreated cells. These data show that EPA and DHA induce alterations in the oxidative status that could affect the glial function.  相似文献   

15.
Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3×10−64) and lower levels of eicosapentaenoic acid (EPA, p = 5×10−58) and docosapentaenoic acid (DPA, p = 4×10−154). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2×10−12) and DPA (p = 1×10−43) and lower docosahexaenoic acid (DHA, p = 1×10−15). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1×10−8). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries.  相似文献   

16.
Dietary docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3) are considered important for maintaining normal heart and brain function, but little EPA is found in brain, and EPA cannot be elongated to DHA in rat heart due to the absence of elongase-2. Ingested EPA may have to be converted in the liver to DHA for it to be fully effective in brain and heart, but the rate of conversion is not agreed on. This rate was determined in male adult rats fed a standard n-3 PUFA, containing diet by infusing unesterified albumin-bound [U-13C]EPA intravenously for 2 h and measuring esterified [13C]labeled PUFAs in arterial plasma lipoproteins, as well as the specific activity of unesterified plasma EPA. Whole-body (presumably hepatic) synthesis secretion rates from circulating unesterified EPA, calculated from peak first derivatives of plasma esterified concentration × volume curves, equaled 2.61 μmol/day for docosapentaenoic acid (22:5n-3) and 5.46 μmol/day for DHA. The DHA synthesis rate was 24-fold greater than the reported brain DHA consumption rate in rats. Thus, dietary EPA could help to maintain brain and heart DHA homeostasis because it is converted at a relatively high rate in the liver to circulating DHA.  相似文献   

17.
18.
Arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the most biologically active polyunsaturated fatty acids, but their biosyntheses in mammals are very limited. The biosynthesis of DHA is the most difficult, because this undergoes the Sprecher pathway–a further elongation step from docosapentaenoic acid (DPA), a Δ6-desaturase acting on a C24 fatty acid substrate followed by a peroxisomal chain shortening step. This paper reports the successful heterologous expression of two non-mammalian genes (with modification of codon usage), coding for Euglena gracilis Δ4-desaturase and Siganus canaliculatus Δ4-desaturase respectively, in mammalian cells (HEK293 cell line). Both of the Δ4-desaturases can efficiently function, directly converting DPA into DHA. Moreover, the cooperation of the E. gracilis Δ4-desaturase with C. elegans Δ15-desaturase (able to convert a number of n-6 PUFAs to their corresponding n-3 PUFAs) in transgenic HEK293 cells made a more desirable fatty acid composition – a drastically reduced n-6/n-3 PUFAs ratio and a high level of DHA as well as EPA and ARA. Our findings provide a basis for potential applications of the gene constructs for expression of Δ15/Δ4-desaturases in transgenic livestock to produce such a fatty acid profile in the related products, which certainly will bring benefit to human health.  相似文献   

19.
20.
Statins are highly effective cholesterol-lowering drugs but may have broader effects on metabolism. This investigation examined effects of simvastatin on serum levels of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Subjects were 106 healthy adults with hypercholesterolemia randomly assigned to receive placebo or 40 mg simvastatin daily for 24 weeks. Serum fatty acids were analyzed by gas chromatography. Total fatty acid concentration fell 22% in subjects receiving simvastatin (P<.001), with similar declines across most fatty acids. However, concentrations of arachidonic acid (AA, 20:4n-6), eicosapentanoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) were unchanged. Relative percentages of linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (LNA, 18:3n-3), decreased while AA and DHA increased (P's < or = .007). In addition, simvastatin increased the AA:EPA ratio from 15.5 to 18.8 (P<.01), and tended to increase the AA:DHA ratio (P=.053). Thus, simvastatin lowered serum fatty acid concentrations while also altering the relative percentages of important PUFAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号