共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation in the Circumsporozoite Protein of Plasmodium falciparum: Vaccine Development Implications
Kavita Gandhi Mahamadou A. Thera Drissa Coulibaly Karim Traoré Ando B. Guindo Amed Ouattara Shannon Takala-Harrison Andrea A. Berry Ogobara K. Doumbo Christopher V. Plowe 《PloS one》2014,9(7)
The malaria vaccine candidate RTS,S/AS01 is based on immunogenic regions of Plasmodium falciparum circumsporozoite protein (CSP) from the 3D7 reference strain and has shown modest efficacy against clinical disease in African children. It remains unclear what aspect(s) of the immune response elicited by this vaccine are protective. The goals of this study were to measure diversity in immunogenic regions of CSP, and to identify associations between polymorphism in CSP and the risk of P. falciparum infection and clinical disease. The present study includes data and samples from a prospective cohort study designed to measure incidence of malaria infection and disease in children in Bandiagara, Mali. A total of 769 parasite-positive blood samples corresponding to both acute clinical malaria episodes and asymptomatic infections experienced by 100 children were included in the study. Non-synonymous SNP data were generated by 454 sequencing for the T-cell epitopes, and repeat length data were generated for the B-cell epitopes of the cs gene. Cox proportional hazards models were used to determine the effect of sequence variation in consecutive infections occurring within individuals on the time to new infection and new clinical malaria episode. Diversity in the T-cell epitope-encoding regions Th2R and Th3R remained stable throughout seasons, between age groups and between clinical and asymptomatic infections with the exception of a higher proportion of 3D7 haplotypes found in the oldest age group. No associations between sequence variation and hazard of infection or clinical malaria were detected. The lack of association between sequence variation and hazard of infection or clinical malaria suggests that naturally acquired immunity to CSP may not be allele-specific. 相似文献
2.
Structure of the Plasmodium falciparum Circumsporozoite Protein, a Leading Malaria Vaccine Candidate
Matthew L. Plassmeyer Karine Reiter Richard L. Shimp Jr. Svetlana Kotova Paul D. Smith Darrell E. Hurt Brent House Xiaoyan Zou Yanling Zhang Merrit Hickman Onyinyechukwu Uchime Raul Herrera Vu Nguyen Jacqueline Glen Jacob Lebowitz Albert J. Jin Louis H. Miller Nicholas J. MacDonald Yimin Wu David L. Narum 《The Journal of biological chemistry》2009,284(39):26951-26963
The Plasmodium falciparum circumsporozoite protein (CSP) is critical for sporozoite function and invasion of hepatocytes. Given its critical nature, a phase III human CSP malaria vaccine trial is ongoing. The CSP is composed of three regions as follows: an N terminus that binds heparin sulfate proteoglycans, a four amino acid repeat region (NANP), and a C terminus that contains a thrombospondin-like type I repeat (TSR) domain. Despite the importance of CSP, little is known about its structure. Therefore, recombinant forms of CSP were produced by expression in both Escherichia coli (Ec) and then refolded (EcCSP) or in the methylotrophic yeast Pichia pastoris (PpCSP) for structural analyses. To analyze the TSR domain of recombinant CSP, conformation-dependent monoclonal antibodies that recognized unfixed P. falciparum sporozoites and inhibited sporozoite invasion of HepG2 cells in vitro were identified. These monoclonal antibodies recognized all recombinant CSPs, indicating the recombinant CSPs contain a properly folded TSR domain structure. Characterization of both EcCSP and PpCSP by dynamic light scattering and velocity sedimentation demonstrated that both forms of CSP appeared as highly extended proteins (Rh 4.2 and 4.58 nm, respectively). Furthermore, high resolution atomic force microscopy revealed flexible, rod-like structures with a ribbon-like appearance. Using this information, we modeled the NANP repeat and TSR domain of CSP. Consistent with the biochemical and biophysical results, the repeat region formed a rod-like structure about 21–25 nm in length and 1.5 nm in width. Thus native CSP appears as a glycosylphosphatidylinositol-anchored, flexible rod-like protein on the sporozoite surface.Malaria caused by Plasmodium falciparum is a serious global health issue, resulting in an estimated 1.5 million deaths annually, primarily among infants and young children. Ongoing multifaceted global intervention strategies to control malaria include drug treatment, insecticide usage, bed-net use, and vaccine development. However, parasite and mosquito control measures have met with limited success resulting from an increased drug and insecticide resistance within the Plasmodia and mosquito populations, respectively. Vaccine development represents an encouraging approach given that previous animal and human studies using irradiated sporozoites demonstrated the feasibility of producing an efficacious vaccine (1–3). Although the exact immunologic correlates of protection remain elusive, an abundance of evidence indicates that protection against liver stage parasites is complex, involving multiple immune mechanisms (4–11).To date, the majority of the pre-erythrocytic stage vaccine development has focused on the circumsporozoite protein (CSP),2 the predominant surface antigen on sporozoites. CSP can be segmented into three regions as follows: the N-terminal region containing region I; the central repeat region; and the C-terminal region containing the thrombospondin-like type I repeat (TSR). Initial CSP vaccine development focused on the central repeat region that contains the immunodominant B cell epitope (12). However, vaccine constructs quickly evolved to incorporate both the central repeat region containing the B cell epitopes and the C terminus containing the TSR domain, T cell epitopes, and B cell epitopes (13, 14). Currently, the most advanced and moderately effective malaria vaccine, RTS,S, is composed of a portion of the central repeat and the C-terminal regions linked to the hepatitis B surface antigen (15). However, recent studies have highlighted the physiological importance of the N-terminal region (16–19). Rathore et al. (19) not only demonstrated the role of the N-terminal region in liver cell attachment but also identified along with Ancsin and Kisilevsky (16) an epitope within the N-terminal region that interacted with liver cells through heparin sulfate (18). Moreover, this epitope was not only found to be immunogenic but the resulting antibodies were determined to be inhibitory in a sporozoite invasion assay (18). Peptides corresponding to the N-terminal region (PpCS-(22–110) and PpCS-(65–110)) were also recognized by sera obtained from individuals living in malaria-endemic regions (17).To better understand the structure of CSP and to produce good quality recombinant protein for human vaccine-directed studies, we generated full-length and near full-length recombinant CSP. We examined two expression systems, Escherichia coli and Pichia pastoris, to determine their feasibility to generate CSP. To assist the characterization of the rCSPs, we generated a panel of monoclonal antibodies (mAbs) that were characterized biologically prior to being used to examine the rCSPs. Additionally, each of the rCSP molecules was extensively biochemically and biophysically characterized. The results collated together have enabled the molecular modeling of CSP as a long flexible, rod-like protein. 相似文献
3.
4.
Stephen A. Kaba Margaret E. McCoy Tais A. P. F. Doll Clara Brando Qin Guo Debleena Dasgupta Yongkun Yang Christian Mittelholzer Roberta Spaccapelo Andrea Crisanti Peter Burkhard David E. Lanar 《PloS one》2012,7(10)
Background
The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8+ and CD4+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN) vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.Methodology/Principal Findings
To establish the basis for a SAPN-based vaccine, B- and CD8+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP) and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids) that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP). We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year) protective antibody and poly-functional (IFNγ+, IL-2+) long-lived central memory CD8+ T-cells. Furthermore, we demonstrated that these Ab or CD8+ T–cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.Conclusion
The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP) and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP. 相似文献5.
Amy R. Noe Diego Espinosa Xiangming Li Jordana G. A. Coelho-dos-Reis Ryota Funakoshi Steve Giardina Hongfan Jin Diane M. Retallack Ryan Haverstock Jeffrey R. Allen Thomas S. Vedvick Christopher B. Fox Steven G. Reed Ramses Ayala Brian Roberts Scott B. Winram John Sacci Moriya Tsuji Fidel Zavala Gabriel M. Gutierrez 《PloS one》2014,9(9)
The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite''s surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria. 相似文献
6.
M Zeeshan MT Alam S Vinayak H Bora RK Tyagi MS Alam V Choudhary P Mittra V Lumb PK Bharti V Udhayakumar N Singh V Jain PP Singh YD Sharma 《PloS one》2012,7(8):e43430
RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (∼61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (∼59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region. 相似文献
7.
Anjali Yadava Cysha E. Hall JoAnn S. Sullivan Douglas Nace Tyrone Williams William E. Collins Christian F. Ockenhouse John W. Barnwell 《PLoS neglected tropical diseases》2014,8(10)
We have previously reported that Vivax Malaria Protein 001 (VMP001), a vaccine candidate based on the circumsporozoite protein of Plasmodium vivax, is immunogenic in mice and rhesus monkeys in the presence of various adjuvants. In the present study, we evaluated the immunogenicity and efficacy of VMP001 formulated with a TLR9 agonist in a water-in-oil emulsion. Following immunization, the vaccine efficacy was assessed by challenging Aotus nancymaae monkeys with P. vivax sporozoites. Monkeys from both the low- and high-dose vaccine groups generated strong humoral immune responses to the vaccine (peak median titers of 291,622), and its subunits (peak median titers to the N-term, central repeat and C-term regions of 22,188; 66,120 and 179,947, respectively). 66.7% of vaccinated monkeys demonstrated sterile protection following challenge. Protection was associated with antibodies directed against the central repeat region. The protected monkeys had a median anti-repeat titer of 97,841 compared to 14,822 in the non-protected monkeys. This is the first report demonstrating P. vivax CSP vaccine-induced protection of Aotus monkeys challenged with P. vivax sporozoites. 相似文献
8.
Sanjai Kumar Hong Zheng Bingbing Deng Babita Mahajan Bryan Grabias Yukiko Kozakai Merribeth J. Morin Emily Locke Ashley Birkett Kazutoyo Miura Carole Long 《PloS one》2014,9(12)
There is still a need for sensitive and reproducible immunoassays for quantitative detection of malarial antigens in preclinical and clinical phases of vaccine development and in epidemiology and surveillance studies, particularly in the vector host. Here we report the results of sensitivity and reproducibility studies for a research-grade, quantitative enhanced chemiluminescent-based slot blot assay (ECL-SB) for detection of both recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP) and native PfCSP from Oocysts (Pf Oocyst) developing in the midguts of Anopheles stephensi mosquitoes. The ECL-SB detects as little as 1.25 pg of rPfCSP (linear range of quantitation 2.5–20 pg; R2 = 0.9505). We also find the earliest detectable expression of native PfCSP in Pf Oocyst by ECL-SB occurs on day 7 post feeding with infected blood meal. The ECL-SB was able to detect approximately as few as 0.5 day 8 Pf Oocysts (linear quantitation range 1–4, R2 = 0.9795) and determined that one Pf Oocyst expressed approximately 2.0 pg (0.5–3 pg) of native PfCSP, suggesting a similar range of detection for recombinant and native forms of Pf CSP. The ECL-SB is highly reproducible; the Coefficient of Variation (CV) for inter-assay variability for rPf CSP and native PfCSP were 1.74% and 1.32%, respectively. The CVs for intra-assay variability performed on three days for rPf CSP were 2.41%, 0.82% and 2% and for native Pf CSP 1.52%, 0.57%, and 1.86%, respectively. In addition, the ECL-SB was comparable to microscopy in determining the P. falciparum prevalence in mosquito populations that distinctly contained either high and low midgut Pf Oocyst burden. In whole mosquito samples, estimations of positivity for P. falciparum in the high and low burden groups were 83.3% and 23.3% by ECL-SB and 85.7% and 27.6% by microscopy. Based on its performance characteristics, ECL-SB could be valuable in vaccine development and to measure the parasite prevalence in mosquitoes and transmission-blocking interventions in endemic areas. 相似文献
9.
10.
本文介绍了以噬菌体λEMBL3为载体的中国海南岛人恶性疟原虫FCC1/HN分离株基因文库的构建。所得重组体的数目为3.3×10~4pfu,其相当于构建完整基因库理论计算值的6倍。作者以人工合成的巴西株恶性疟环子孢子蛋白基因重复序列区的24-mer寡核苷酸(AATGCAAACCCAAATGCAAACCCA)作探针,进行噬斑原位杂交,筛得三株阳性克隆。对其一重组体进行酶谱分析和Southern印迹实验,环子孢子蛋白基因被定位于HindⅢ和BamHI联合降解后所得的的4kb大小的片段上。 相似文献
11.
Régine Audran Floriana Lurati-Ruiz Blaise Genton Hildur E. Blythman Opokua Ofori-Anyinam Christophe Reymond Giampietro Corradin Fran?ois Spertini 《PloS one》2009,4(10)
Background
Fully efficient vaccines against malaria pre-erythrocytic stage are still lacking. The objective of this dose/adjuvant-finding study was to evaluate the safety, reactogenicity and immunogenicity of a vaccine candidate based on a peptide spanning the C-terminal region of Plasmodium falciparum circumsporozoite protein (PfCS102) in malaria naive adults.Methodology and Principal Findings
Thirty-six healthy malaria-naive adults were randomly distributed into three dose blocks (10, 30 and 100 µg) and vaccinated with PfCS102 in combination with either Montanide ISA 720 or GSK proprietary Adjuvant System AS02A at days 0, 60, and 180. Primary end-point (safety and reactogenicity) was based on the frequency of adverse events (AE) and of abnormal biological safety tests; secondary-end point (immunogenicity) on P. falciparum specific cell-mediated immunity and antibody response before and after immunization. The two adjuvant formulations were well tolerated and their safety profile was good. Most AEs were local and, when systemic, involved mainly fatigue and headache. Half the volunteers in AS02A groups experienced severe AEs (mainly erythema). After the third injection, 34 of 35 volunteers developed anti-PfCS102 and anti-sporozoite antibodies, and 28 of 35 demonstrated T-cell proliferative responses and IFN-γ production. Five of 22 HLA-A2 and HLA-A3 volunteers displayed PfCS102 specific IFN-γ secreting CD8+ T cell responses. Responses were only marginally boosted after the 3rd vaccination and remained stable for 6 months. For both adjuvants, the dose of 10 µg was less immunogenic in comparison to 30 and 100 µg that induced similar responses. AS02A formulations with 30 µg or 100 µg PfCS102 induced about 10-folds higher antibody and IFN-γ responses than Montanide formulations.Conclusions/Significance
PfCS102 peptide was safe and highly immunogenic, allowing the design of more advanced trials to test its potential for protection. Two or three immunizations with a dose of 30 µg formulated with AS02A appeared the most appropriate choice for such studies.Trial Registration
Swissmedic.ch 2002 DR 1227 相似文献12.
目的:Pfs25蛋白是传播阻断型恶性疟疾疫苗的侯选抗原,在毕赤酵母中表达Pfs25蛋白,并对表达产物进行鉴定。方法:参照GenBank中公布的pfs25基因序列,通过毕赤酵母喜好密码子分析人工合成目的基因;采取定向克隆策略构建重组表达质粒pfs25/pGAPZαA,经BstXⅠ线性化,电转染法转化酵母菌株GS115,在Zeocin抗性的筛选培养基上获得表达目的基因的pfs25/pGAPZαA/GS115重组酵母菌,SDS-PAGE和Western印迹检测表达产物;通过在YPD培养基上传代培养和目的基因表达,验证重组菌株的遗传稳定性。结果:在毕赤酵母中表达了Pfs25蛋白,且重组菌株遗传性质稳定。结论:为研制基于Pfs25蛋白的传播阻断型恶性疟疾疫苗奠定了基础。 相似文献
13.
We performed reverse-phase thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC) analysis of polyisoprenoids released by sulfonium-salt cleavage with methyl iodide from Plasmodium falciparum proteins labeled with [3H]FPP or [3H]GGPP and showed that a dolichol of 11 isoprene units is bound to 21-28-kDa protein clusters from trophozoite and schizont stages. The dolichol structure was confirmed by electrospray-ionization mass spectrometry analysis. Treatment with protein synthesis inhibitors and RP-HPLC analysis of the proteolytic digestion products from parasite proteins labeled with [35S]cysteine and [3H]FPP showed that the attachment of dolichol to protein is a post-translational event and probably occurs via a covalent bond to cysteine residues. 相似文献
14.
Jairo Andres Fonseca Monica Cabrera-Mora Elena A. Kashentseva John Paul Villegas Alejandra Fernandez Amelia Van Pelt Igor P. Dmitriev David T. Curiel Alberto Moreno 《PloS one》2016,11(4)
A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines. 相似文献
15.
呼吸道合胞病毒重组蛋白候选疫苗的质粒构建、表达及免疫原性和保护性研究 总被引:3,自引:0,他引:3
PCR扩增呼吸道合胞病毒(respiratory syncytial virus,RSV)M2 蛋白的CD8+T细胞表位F/M2:81-95和RSV-G蛋白的B细胞表位片段G:125~225(简称G1),以一个Linker连接,插入质粒pET-DsbA中构建原核表达重组质粒, 转染E.coli BL21(DE3)后成功表达了融合蛋白DsbA-G1-Linker-F/M2:81-95(简称D-G1LF/M2),Western-blot结果表明该融合蛋白是RSV特异性的,采用Ni+螯合亲和层析法纯化变性的包涵体溶液,经梯度透析法复性,用该蛋白免疫BALB/c小鼠,结果表明被免疫小鼠肺部及血清中产生了高滴度的抗D-G1LF/M2及抗RSV IgG抗体和中和抗体,同时还诱导产生了RSV特异性的CTL应答;IgG的亚型IgG1/IgG2a的比值为2.66;用RSV攻击免疫后的小鼠,病毒滴定法检测肺部RSV滴度,结果表明D-G1LF/M2对小鼠肺部具有保护作用。 相似文献
16.
目的:评价结核DNA疫苗免疫鼠产生细胞因子和抵抗结核分枝杆菌攻击的能力。方法:将结核菌Mtb8.4基因和谷胱甘肽S转移酶基因插入pVAX1载体,构建表达Mtb8.4和GST融合蛋白的DNA疫苗pVS8.4G。小鼠分成5组,用pVS8.4G、pVAX1、pIL2S 100μg和PBS 0.1mL各免疫3次,间隔2w。另一组用BCG免疫1次。每组10只鼠在加强后,无菌取脾培养。另外10只小鼠用H37Rv攻击,2w后取脾、肝和肺培养结核菌并计数。结果:pVS8.4G免疫鼠脾细胞培养上清mIL-2和mIFN-γ平均为380.9和422.1pg/mL,显著高于阴性对照组,与BCG组无显著差异。5个组的平均mIL-6和mIL-10无显著差异。pVS8.4G免疫小鼠脾、肝和肺的平均结核菌载量分别为42 093.2、43 264.1和37 264.8CFU/g,低于pVAX1、pIL2S和PBS组相应器官的载量。结论:DNA疫苗pVS8.4G能刺激产生Th1型免疫应答,免疫鼠抵抗H37Rv攻击的能力增强。 相似文献
17.
ELIANA M. M. ROCHA MICHAEL R. HOLLINGDALE BARBARA SINA PAMELA LELAND JOSÉ D. LOPES ANTONIANA U. KRETTLI 《The Journal of eukaryotic microbiology》1993,40(1):61-63
ABSTRACT. Monoclonal antibodies that react with the circumsporozoite protein of the avian malaria Plasmodium gallinaceum sporozoites also reacted with circumsporozoite protein of the rodent malaria Plasmodium berghei. Two types of reactivity were identified: 1) two monoclonal antibodies reacted with P. berghei sporozoite protein by enzyme-linked immunosorbent assay, Western blot and indirect immunofluorescence antibody, 2) six other monoclonal antibodies reacted with P. berghei sporozoites by ELISA and Western blot only. We studied whether these differences could be explained by reactivity in enzyme-linked immunosorbent assay with different P. berghei circumsporozoite peptides. Although all P. gallinaceum monoclonal antibodies reacted with the P. berghei repeats, the first group reacted with a conserved peptide sequence, N1, whereas the second group did not. These results suggest that circumsporozoite proteins from P. gallinaceum and P. berghei share common epitopes. the biological significance of our finding is not yet clear. Indeed, the cross-reactive monoclonal antibodies giving a positive indirect immunofluorescence antibody with the P. berghei sporozoites only caused a borderline effect on the living P. berghei parasites in vitro as measured by inhibition of sporozoite infectivity. 相似文献
18.
根据编码增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)的开放读码框(open reading frame,ORF)设计引物,PCR方法扩增出5'端带His标签的EGF PORF,利用杆状病毒表达系统构建表达EGFP基因的重组杆状病毒DNA分子,转染sf9细胞.取细胞... 相似文献
19.
Jinyoung Lee Kyoung Jin Seong Kyu Ahn Sung-Keun Lee Hyung Wook Kwon Byoung-Kuk Na Tong-Soo Kim 《The Korean journal of parasitology》2021,59(4):415
The circumsporozoite protein (CSP) of Plasmodium spp. is a diagnostic antigen and useful biomarker for monitoring short-term/seasonal changes to malaria transmission. Using P. vivax CSP antibody ELISA, epidemiological characteristics were analyzed in the residents of Ganghwa, Cheorwon, Paju, and Goseong from 2017 to 2018. In Ganghwa and Cheorwon, 1.6% and 1.2% of residents, respectively, were PvCSP-antibody-positive in 2018, which indicates a decrease of 0.4% in the positive rate compared to 2017. The annual parasite incidence (API) in Ganghwa and Cheorwon was 24.9 and 10.5 in 2017 and 20.3 and 10.7 in 2018, respectively. Although the changes were not significant, the API in Ganghwa decreased slightly by 4.5 in 2018 compared to the previous year. In Paju and Goseong, 3.9% and 2.0% of residents were positive for the PvCSP antibody. The API in Paju was 13.1 in 2017 and 16.0 in 2018, although no malaria patients were reported for the 2 years. Therefore, the results suggest that PvCSP is a useful antigen for confirming initial malaria infection. Additionally, considering that the antibody is relatively transient, it can be employed for sero-epidemiological studies to determine the extent of malaria transmission in the current year. 相似文献
20.