首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-Golgi network (TGN) during trafficking to the lytic vacuole (LV). Here, we report that VPS29 plays an essential role in the trafficking of soluble proteins to the LV from the TGN to the PVC. maigo1-1 (mag1-1) mutants, which harbor a knockdown mutation in VPS29, were defective in trafficking of two soluble proteins, Arabidopsis aleurain-like protein (AALP):green fluorescent protein (GFP) and sporamin:GFP, to the LV but not in trafficking membrane proteins to the LV or plasma membrane or via the secretory pathway. AALP:GFP and sporamin:GFP in mag1-1 protoplasts accumulated in the TGN but were also secreted into the medium. In mag1-1 mutants, VSR1 failed to recycle from the PVC to the TGN; rather, a significant proportion was transported to the LV; VSR1 overexpression rescued this defect. Moreover, endogenous VSRs were expressed at higher levels in mag1-1 plants. Based on these results, we propose that VPS29 plays a crucial role in recycling VSRs from the PVC to the TGN during the trafficking of soluble proteins to the LV.  相似文献   

2.
Vacuolar sorting receptors bind cargo ligands early in the secretory pathway and show that multivesicular body-vacuole fusion requires a Rab5/Rab7 GTPase conversion with consequences for retromer binding.To serve the purposes of controlled protein turnover, eukaryotic cells compartmentalize the required acid hydrolases in specialized digestive organelles: lysosomes in animals and vacuoles in yeasts and plants. Therefore, a reliable system must be in operation to prevent such proteolytic enzymes being released at the cell surface. Such a mechanism requires that acid hydrolases be identified and diverted away from the secretory flow to the plasma membrane (PM). This process is facilitated by receptors that recognize specific motifs in the hydrolases that are absent in secretory proteins. The most well-known example of this is the mannosyl 6-phosphate receptor (MPR), which is responsible for the sorting of lysosomal enzymes; indeed, it has become a paradigm for protein sorting in most cell biology textbooks. It entails the recognition of phosphomannan cargo ligands by MPRs in the trans-Golgi network (TGN) followed by the sequestration of the MPR-ligand complexes into specific transport vectors (clathrin-coated vesicles [CCVs]). These are then transported to an endosomal compartment (the early endosome [EE]) having a more acidic pH than the TGN, thereby causing the ligands to separate from the MPRs. The MPRs are subsequently recycled back to the TGN via retromer-coated carriers for another round of trafficking (for review, see Braulke and Bonifacino, 2009; Seaman, 2012).Many plant scientists support a scenario for the sorting of soluble vacuolar proteins and the trafficking of their receptors (vacuolar sorting receptors [VSRs]) that closely resembles that of the MPR system of mammalian cells (Hwang, 2008; De Marcos Lousa et al., 2012; Kang et al., 2012; Sauer et al., 2013; Xiang et al., 2013). This working model is based on three key observations: (1) VSRs were first identified in detergent-solubilized CCV fractions isolated from developing pea (Pisum sativum) cotyledons; (2) CCVs are regularly seen budding off the TGN in thin-sectioned plant cells; and (3) depending on the organism, VSRs and VSR-reporter constructs are found concentrated either in the TGN or in multivesicular prevacuolar compartments (PVCs) under steady-state conditions (Robinson and Pimpl, 2014a, 2014b, and refs. therein). Unfortunately, information on VSRs has not been obtained from a single experimental system. Although much work on Arabidopsis (Arabidopsis thaliana) VSR mutants has been published (for review, see De Marcos Lousa et al., 2012) and the majority of immunogold electron microscopic localization experiments have been performed in Arabidopsis, the majority of the fluorescence localizations, particularly with regard to VSR trafficking, have been carried out by transient expression in tobacco (Nicotiana tabacum; agroinfiltration for leaves and electroporation for protoplasts). Nevertheless, it should be stressed that sorting motifs for acid hydrolases and their corresponding receptors in the three major eukaryotic organismal groups differ considerably (Robinson et al., 2012). In addition, the secretory and endocytic pathways of plant cells contrast significantly with mammalian cells, the most important distinctions being (1) the lack of an intermediate compartment between the endoplasmic reticulum (ER) and the Golgi apparatus in plants, (2) that plants have motile Golgi stacks rather than a perinuclear Golgi complex, and (3) the absence of an independent EE in plants, the function of which is assumed by the TGN (Contento and Bassham, 2012). While these differences do not automatically negate the validity of the above working model for VSR trafficking, they at least legitimize a more thorough analysis of the supporting data than has previously been the case (Robinson and Pimpl, 2014a, 2014b).The principal issues at stake are as follows. Where do VSRs bind and release their cargo ligands? What is the actual mechanism resulting in the separation of secretory from vacuolar cargo molecules? What is/are the precise role(s) of TGN-derived CCVs? And where does retromer pick up VSRs and where are they delivered to? The impact of several new publications on these points of dispute is the subject of this article.  相似文献   

3.
The secretion of cell wall polysaccharides through the trans-Golgi network (TGN) is required for plant cell elongation. However, the components mediating the post-Golgi secretion of pectin and hemicellulose, the two major cell wall polysaccharides, are largely unknown. We identified evolutionarily conserved YPT/RAB GTPase Interacting Protein 4a (YIP4a) and YIP4b (formerly YIP2), which form a TGN-localized complex with ECHIDNA (ECH) in Arabidopsis thaliana. The localization of YIP4 and ECH proteins at the TGN is interdependent and influences the localization of VHA-a1 and SYP61, which are key components of the TGN. YIP4a and YIP4b act redundantly, and the yip4a yip4b double mutants have a cell elongation defect. Genetic, biochemical, and cell biological analyses demonstrate that the ECH/YIP4 complex plays a key role in TGN-mediated secretion of pectin and hemicellulose to the cell wall in dark-grown hypocotyls and in secretory cells of the seed coat. In keeping with these observations, Fourier transform infrared microspectroscopy analysis revealed that the ech and yip4a yip4b mutants exhibit changes in their cell wall composition. Overall, our results reveal a TGN subdomain defined by ECH/YIP4 that is required for the secretion of pectin and hemicellulose and distinguishes the role of the TGN in secretion from its roles in endocytic and vacuolar trafficking.  相似文献   

4.
Plant clathrin-mediated membrane trafficking is involved in many developmental processes as well as in responses to environmental cues. Previous studies have shown that clathrin-mediated endocytosis of the plasma membrane (PM) auxin transporter PIN-FORMED1 is regulated by the extracellular auxin receptor AUXIN BINDING PROTEIN1 (ABP1). However, the mechanisms by which ABP1 and other factors regulate clathrin-mediated trafficking are poorly understood. Here, we applied a genetic strategy and time-resolved imaging to dissect the role of clathrin light chains (CLCs) and ABP1 in auxin regulation of clathrin-mediated trafficking in Arabidopsis thaliana. Auxin was found to differentially regulate the PM and trans-Golgi network/early endosome (TGN/EE) association of CLCs and heavy chains (CHCs) in an ABP1-dependent but TRANSPORT INHIBITOR RESPONSE1/AUXIN-BINDING F-BOX PROTEIN (TIR1/AFB)-independent manner. Loss of CLC2 and CLC3 affected CHC membrane association, decreased both internalization and intracellular trafficking of PM proteins, and impaired auxin-regulated endocytosis. Consistent with these results, basipetal auxin transport, auxin sensitivity and distribution, and root gravitropism were also found to be dramatically altered in clc2 clc3 double mutants, resulting in pleiotropic defects in plant development. These results suggest that CLCs are key regulators in clathrin-mediated trafficking downstream of ABP1-mediated signaling and thus play a critical role in membrane trafficking from the TGN/EE and PM during plant development.  相似文献   

5.
Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.Plant vacuoles are vital organelles for maintaining cell volume and cell turgor, regulating ion homeostasis and pH, disposing toxic materials, and storing and degrading unwanted proteins (Marty, 1999). To perform these diverse functions, vacuoles require an array of different and complex proteins. These proteins are synthesized at the endoplasmic reticulum (ER) and are transported to the vacuole through the vacuolar trafficking pathway. Perturbation of the vacuolar trafficking machinery affects many cellular processes, including tropisms, responses to pathogens, cytokinesis, hormone transport, and signal transduction (Surpin and Raikhel, 2004). The vacuolar trafficking system is comprised of several compartments: the ER, the Golgi apparatus, the trans-Golgi network (TGN), the prevacuolar compartment (PVC), and the vacuole. Vacuolar proteins synthesized at the ER are transported to the cis-Golgi via coat protein complex II (COPII) vesicles and are then transported to the TGN through the Golgi apparatus. In the TGN, proteins are sorted for delivery to their respective locations according to their targeting signal. Vacuolar proteins carrying a vacuolar sorting signal are thought to be recognized by vacuolar sorting receptors (VSRs), which are mainly located in the PVC, although sorting of vacuolar proteins may also occur at the ER and VSRs can be recycled from the TGN to the ER (Castelli and Vitale, 2005; Niemes et al., 2010). Multiple studies suggest that plant VSRs serve as sorting receptors both for lytic vacuole proteins (daSilva et al., 2005; Foresti et al., 2006; Kim et al., 2010) and for storage vacuole proteins (Shimada et al., 2003; Fuji et al., 2007; Zouhar et al., 2010).Osmotic stress is commonly associated with many environmental stresses, including drought, cold, and high soil salinity, that have a severe impact on the productivity of agricultural plants worldwide. Therefore, understanding how plants perceive and respond to osmotic stress is critical for improving plant resistance to abiotic stresses (Zhu, 2002; Fujita et al., 2013). It has long been recognized that osmotic stress can activate several signaling pathways that lead to changes in gene expression and metabolism. One important regulator of these signaling pathways is the phytohormone abscisic acid (ABA), which accumulates in response to osmotic stress. ABA regulates many critical processes, such as seed dormancy, stomatal movement, and adaptation to environmental stress (Finkelstein and Gibson, 2002; Xiong and Zhu, 2003; Cutler et al., 2010). De novo synthesis of ABA is of primary importance for increasing ABA levels in response to abiotic stress. ABA is synthesized through the cleavage of a C40 carotenoid originating from the 2-C-methyl-d-erythritol-4-phosphate pathway, followed by a conversion from zeaxanthin to violaxanthin catalyzed by the zeaxanthin epoxidase ABA1 and then to neoxanthin catalyzed by the neoxanthin synthase ABA4. Subsequently, a 9-cis-epoxycarotenoid dioxygenase (NCED) cleaves the violaxanthin and neoxanthin to xanthoxin. Xanthoxin, in turn, is oxidized by a short-chain alcohol dehydrogenase (ABA2) to abscisic aldehyde, which is converted to ABA by abscisic acid aldehyde oxidase3 (AAO3) using a molybdenum cofactor activated by the molybdenum cofactor sulfurase (ABA3; Nambara and Marion-Poll, 2005). In this pathway, it is generally thought that the cleavage step catalyzed by NCED is the rate-limiting step (Iuchi et al., 2000, 2001; Qin and Zeevaart, 2002; Xiong and Zhu, 2003). In Arabidopsis (Arabidopsis thaliana), five members of the NCED family (NCED2, NCED3, NCED5, NCED6, and NCED9) have been characterized (Tan et al., 2003). Of those, NCED3 has been suggested to play a crucial role in ABA biosynthesis, and its expression is induced by dehydration and osmotic stress (Iuchi et al., 2000, 2001; Qin and Zeevaart, 2002; Xiong and Zhu, 2003). Thus, understanding how the NCED3 gene is activated in response to osmotic stress is important for the elucidation of the mechanisms that govern plant acclimation to abiotic stress.We have used the firefly luciferase reporter gene driven by the stress-responsive NCED3 promoter to enable the genetic dissection of plant responses to osmotic stress (Wang et al., 2011). Here, we report the characterization of a unique regulator of ABA biosynthesis, 9-cis Epoxycarotenoid Dioxygenase Defective2 (CED2). The ced2 mutants are impaired in osmotic stress tolerance and are defective in the expression of genes required for ABA synthesis and consequently osmotic stress-induced ABA accumulation. The CED2 gene encodes VSR1, previously known to be involved in vacuolar trafficking but not known to be critical for osmotic stress induction of ABA biosynthesis and osmotic stress tolerance. Our study further suggests that intracellular pH changes might act as an early stress response signal triggering osmotic stress-activated ABA biosynthesis.  相似文献   

6.
Membrane proteins on the tonoplast are indispensible for vacuolar functions in plants. However, how these proteins are transported to the vacuole and how they become separated from plasma membrane proteins remain largely unknown. In this study, we used Arabidopsis thaliana vacuolar ion transporter1 (VIT1) as a reporter to study the mechanisms of tonoplast targeting. We showed that VIT1 reached the tonoplast through a pathway involving the endoplasmic reticulum (ER), Golgi, trans-Golgi network (TGN), prevacuolar compartment, and tonoplast. VIT1 contains a putative N-terminal dihydrophobic type ER export signal, and its N terminus has a conserved dileucine motif (EKQTLL), which is responsible for tonoplast targeting. In vitro peptide binding assays with synthetic VIT1 N terminus identified adaptor protein complex-1 (AP1) subunits that interacted with the dileucine motif. A deficiency of AP1 gamma adaptins in Arabidopsis cells caused relocation of tonoplast proteins containing the dileucine motif, such as VIT1 and inositol transporter1, to the plasma membrane. The dileucine motif also effectively rerouted the plasma membrane protein SCAMP1 to the tonoplast. Together with subcellular localization studies showing that AP1 gamma adaptins localize to the TGN, we propose that the AP1 complex on the TGN mediates tonoplast targeting of membrane proteins with the dileucine motif.  相似文献   

7.
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB or tonoplast, we have identified dominant negative mutants of ESCRT-III subunits that affect membrane protein degradation from both secretory and endocytic pathways. In addition, induced expression of these mutants resulted in reduction in luminal vesicles of PVC/MVB, along with increased detection of membrane-attaching vesicles inside the PVC/MVB. Transgenic Arabidopsis (Arabidopsis thaliana) plants with induced expression of ESCRT-III dominant negative mutants also displayed severe cotyledon developmental defects with reduced cell size, loss of the central vacuole, and abnormal chloroplast development in mesophyll cells, pointing out an essential role of the ESCRT-III complex in postembryonic development in plants. Finally, membrane dissociation of ESCRT-III components is important for their biological functions and is regulated by direct interaction among Vacuolar Protein Sorting-Associated Protein20-1 (VPS20.1), Sucrose Nonfermenting7-1, VPS2.1, and the adenosine triphosphatase VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1.Endomembrane trafficking in plant cells is complicated such that secretory, endocytic, and recycling pathways are usually integrated with each other at the post-Golgi compartments, among which, the trans-Golgi network (TGN) and prevacuolar compartment (PVC)/multivesicular body (MVB) are best studied (Tse et al., 2004; Lam et al., 2007a, 2007b; Müller et al., 2007; Foresti and Denecke, 2008; Hwang, 2008; Otegui and Spitzer, 2008; Robinson et al., 2008; Richter et al., 2009; Ding et al., 2012; Gao et al., 2014). Following the endocytic trafficking of a lipophilic dye, FM4-64, the TGN and PVC/MVB are sequentially labeled and thus are defined as the early and late endosome, respectively, in plant cells (Lam et al., 2007a; Chow et al., 2008). While the TGN is a tubular vesicular-like structure that may include several different microdomains and fit its biological function as a sorting station (Chow et al., 2008; Kang et al., 2011), the PVC/MVB is 200 to 500 nm in size with multiple luminal vesicles of approximately 40 nm (Tse et al., 2004). Membrane cargoes destined for degradation are sequestered into these tiny luminal vesicles and delivered to the lumen of the lytic vacuole (LV) via direct fusion between the PVC/MVB and the LV (Spitzer et al., 2009; Viotti et al., 2010; Cai et al., 2012). Therefore, the PVC/MVB functions between the TGN and LV as an intermediate organelle and decides the fate of membrane cargoes in the LV.In yeast (Saccharomyces cerevisiae), carboxypeptidase S (CPS) is synthesized as a type II integral membrane protein and sorted from the Golgi to the lumen of the vacuole (Spormann et al., 1992). Genetic analyses on the trafficking of CPS have led to the identification of approximately 17 class E genes (Piper et al., 1995; Babst et al., 1997, 2002a, 2002b; Odorizzi et al., 1998; Katzmann et al., 2001) that constitute the core endosomal sorting complex required for transport (ESCRT) machinery. The evolutionarily conserved ESCRT complex consists of several functionally different subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III and the ESCRT-III-associated/Vacuolar Protein Sorting4 (VPS4) complex. Together, they form a complex protein-protein interaction network that coordinates sorting of cargoes and inward budding of the membrane on the MVB (Hurley and Hanson, 2010; Henne et al., 2011). Cargo proteins carrying ubiquitin signals are thought to be passed from one ESCRT subcomplex to the next, starting with their recognition by ESCRT-0 (Bilodeau et al., 2002, 2003; Hislop and von Zastrow, 2011; Le Bras et al., 2011; Shields and Piper, 2011; Urbé, 2011). ESCRT-0 recruits the ESCRT-I complex, a heterotetramer of VPS23, VPS28, VPS37, and MVB12, from the cytosol to the endosomal membrane (Katzmann et al., 2001, 2003). The C terminus of VPS28 interacts with the N terminus of VPS36, a member of the ESCRT-II complex (Kostelansky et al., 2006; Teo et al., 2006). Then, cargoes passed from ESCRT-I and ESCRT-II are concentrated in certain membrane domains of the endosome by ESCRT-III, which includes four coiled-coil proteins and is sufficient to induce the membrane invagination (Babst et al., 2002b; Saksena et al., 2009; Wollert et al., 2009). Finally, the ESCRT components are disassociated from the membrane by the adenosine triphosphatase (ATPase) associated with diverse cellular activities (AAA) VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1 (SKD1) before releasing the internal vesicles (Babst et al., 1997, 1998).Putative homologs of ESCRT-I–ESCRT-III and ESCRT-III-associated components have been identified in plants, except for ESCRT-0, which is only present in Opisthokonta (Winter and Hauser, 2006; Leung et al., 2008; Schellmann and Pimpl, 2009). To date, only a few plant ESCRT components have been studied in detail. The Arabidopsis (Arabidopsis thaliana) AAA ATPase SKD1 localized to the PVC/MVB and showed ATPase activity that was regulated by Lysosomal Trafficking Regulator-Interacting Protein5, a plant homolog of Vps Twenty Associated1 Protein (Haas et al., 2007). Expression of the dominant negative form of SKD1 caused an increase in the size of the MVB and a reduction in the number of internal vesicles (Haas et al., 2007). This protein also contributes to the maintenance of the central vacuole and might be associated with cell cycle regulation, as leaf trichomes expressing its dominant negative mutant form lost the central vacuole and frequently contained multiple nuclei (Shahriari et al., 2010). Double null mutants of CHARGED MULTIVESICULAR BODY PROTEIN, chmp1achmp1b, displayed severe growth defects and were seedling lethal. This may be due to the mislocalization of plasma membrane (PM) proteins, including those involved in auxin transport such as PINFORMED1, PINFORMED2, and AUXIN-RESISTANT1, from the vacuolar degradation pathway to the tonoplast of the LV (Spitzer et al., 2009).Plant ESCRT components usually contain several homologs, with the possibility of functional redundancy. Single mutants of individual ESCRT components may not result in an obvious phenotype, whereas knockout of all homologs of an ESCRT component by generating double or triple mutants may be lethal to the plant. As a first step to carry out systematic analysis on each ESCRT complex in plant cells, here, we established an efficient analysis system to monitor the localization changes of four vacuolar reporters that accumulate either in the lumen (LRR84A-GFP, EMP12-GFP, and aleurain-GFP) or on the tonoplast (GFP-VIT1) of the LV and identified several ESCRT-III dominant negative mutants. We reported that ESCRT-III subunits were involved in the release of PVC/MVB’s internal vesicles from the limiting membrane and were required for membrane protein degradation from secretory and endocytic pathways. In addition, transgenic Arabidopsis plants with induced expression of ESCRT-III dominant negative mutants showed severe cotyledon developmental defects. We also showed that membrane dissociation of ESCRT-III subunits was regulated by direct interaction with SKD1.  相似文献   

8.
The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)–green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A–induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.  相似文献   

9.
In plant cells, secretory and endocytic routes intersect at the trans-Golgi network (TGN)/early endosome (EE), where cargos are further sorted correctly and in a timely manner. Cargo sorting is essential for plant survival and therefore necessitates complex molecular machinery. Adaptor proteins (APs) play key roles in this process by recruiting coat proteins and selecting cargos for different vesicle carriers. The µ1 subunit of AP-1 in Arabidopsis (Arabidopsis thaliana) was recently identified at the TGN/EE and shown to be essential for cytokinesis. However, little was known about other cellular activities affected by mutations in AP-1 or the developmental consequences of such mutations. We report here that HAPLESS13 (HAP13), the Arabidopsis µ1 adaptin, is essential for protein sorting at the TGN/EE. Functional loss of HAP13 displayed pleiotropic developmental defects, some of which were suggestive of disrupted auxin signaling. Consistent with this, the asymmetric localization of PIN-FORMED2 (PIN2), an auxin transporter, was compromised in the mutant. In addition, cell morphogenesis was disrupted. We further demonstrate that HAP13 is critical for brefeldin A-sensitive but wortmannin-insensitive post-Golgi trafficking. Our results show that HAP13 is a key link in the sophisticated trafficking network in plant cells.Plant cells contain sophisticated endomembrane compartments, including the endoplasmic reticulum, the Golgi, the trans-Golgi network (TGN)/early endosome (EE), the prevacuolar compartments/multivesicular bodies (PVC/MVB), various types of vesicles, and the plasma membrane (PM; Ebine and Ueda, 2009; Richter et al., 2009). Intracellular protein sorting between the various locations in the endomembrane system occurs in both secretory and endocytic routes (Richter et al., 2009; De Marcos Lousa et al., 2012). Vesicles in the secretory route start at the endoplasmic reticulum, passing through the Golgi before reaching the TGN/EE, while vesicles in the endocytic route start from the PM before reaching the TGN/EE (Dhonukshe et al., 2007; Viotti et al., 2010). The TGN/EE in Arabidopsis (Arabidopsis thaliana) is an independent and highly dynamic organelle transiently associated with the Golgi (Dettmer et al., 2006; Lam et al., 2007; Viotti et al., 2010), distinct from the animal TGN. Once reaching the TGN/EE, proteins delivered by their vesicle carriers are subject to further sorting, being incorporated either into vesicles that pass through the PVC/MVB before reaching the vacuole for degradation or into vesicles that enter the secretory pathway for delivery to the PM (Ebine and Ueda, 2009; Richter et al., 2009). Therefore, the TGN/EE is a critical sorting compartment that lies at the intersection of the secretory and endocytic routes.Fine-tuned control of intracellular protein sorting at the TGN/EE is essential for plant development (Geldner et al., 2003; Dhonukshe et al., 2007, 2008; Richter et al., 2007; Kitakura et al., 2011; Wang et al., 2013). An auxin gradient is crucial for pattern formation in plants, whose dynamic maintenance requires the polar localization of auxin efflux carrier PINs through endocytic recycling (Geldner et al., 2003; Blilou et al., 2005; Paciorek et al., 2005; Abas et al., 2006; Jaillais et al., 2006; Dhonukshe et al., 2007; Kleine-Vehn et al., 2008). Receptor-like kinases (RLKs) have also been recognized as major cargos undergoing endocytic trafficking, which are either recycled back to the PM or sent for vacuolar degradation (Geldner and Robatzek, 2008; Irani and Russinova, 2009). RLKs are involved in most if not all developmental processes of plants (De Smet et al., 2009).Intracellular protein sorting relies on sorting signals within cargo proteins and on the molecular machinery that recognizes sorting signals (Boehm and Bonifacino, 2001; Robinson, 2004; Dhonukshe et al., 2007). Adaptor proteins (AP) play a key role (Boehm and Bonifacino, 2001; Robinson, 2004) in the recognition of sorting signals. APs are heterotetrameric protein complexes composed of two large subunits (β and γ/α/δ/ε), a small subunit (σ), and a medium subunit (µ) that is crucial for cargo selection (Boehm and Bonifacino, 2001). APs associate with the cytoplasmic side of secretory and endocytic vesicles, recruiting coat proteins and recognizing sorting signals within cargo proteins for their incorporation into vesicle carriers (Boehm and Bonifacino, 2001). Five APs have been identified so far, classified by their components, subcellular localization, and function (Boehm and Bonifacino, 2001; Robinson, 2004; Hirst et al., 2011). Of the five APs, AP-1 associates with the TGN or recycling endosomes (RE) in yeast and mammals (Huang et al., 2001; Robinson, 2004), mediating the sorting of cargo proteins to compartments of the endosomal-lysosomal system or to the basolateral PM of polarized epithelial cells (Gonzalez and Rodriguez-Boulan, 2009). Knockouts of AP-1 components in multicellular organisms resulted in embryonic lethality (Boehm and Bonifacino, 2001; Robinson, 2004).We show here that the recently identified Arabidopsis µ1 adaptin AP1M2 (Park et al., 2013; Teh et al., 2013) is a key component in the cellular machinery mediating intracellular protein sorting at the TGN/EE. AP1M2 was previously named HAPLESS13 (HAP13), whose mutant allele hap13 showed male gametophytic lethality (Johnson et al., 2004). In recent quests for AP-1 in plants, HAP13/AP1M2 was confirmed as the Arabidopsis µ1 adaptin based on its interaction with other components of the AP-1 complex as well as its localization at the TGN (Park et al., 2013; Teh et al., 2013). A novel mutant allele of HAP13/AP1M2, ap1m2-1, was found to be defective in the intracellular distribution of KNOLLE, leading to defective cytokinesis (Park et al., 2013; Teh et al., 2013). However, it was not clear whether HAP13/AP1M2 mediated other cellular activities and their developmental consequences. Using the same mutant allele, we found that functional loss of HAP13 (hap13-1/ap1m2-1) resulted in a full spectrum of growth defects, suggestive of compromised auxin signaling and of defective RLK signaling. Cell morphogenesis was also disturbed in hap13-1. Importantly, hap13-1 was insensitive to brefeldin A (BFA) washout, indicative of defects in guanine nucleotide exchange factors for ADP-ribosylation factor (ArfGEF)-mediated post-Golgi trafficking. Furthermore, HAP13/AP1M2 showed evolutionarily conserved function during vacuolar fusion, providing additional support to its identity as a µ1 adaptin. These results demonstrate the importance of the Arabidopsis µ1 adaptin for intracellular protein sorting centered on the TGN/EE.  相似文献   

10.
GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.  相似文献   

11.
In eukaryotic cells, protein trafficking plays an essential role in biogenesis of proteins that belong to the endomembrane compartments. In this process, an important step is the sorting of organellar proteins depending on their final destinations. For vacuolar proteins, vacuolar sorting receptors (VSRs) and receptor homology-transmembrane-RING H2 domain proteins (RMRs) are thought to be responsible. Arabidopsis (Arabidopsis thaliana) contains seven VSRs. Among them, VSR1, VSR3, and VSR4 are involved in sorting storage proteins targeted to the protein storage vacuole (PSV) in seeds. However, the identity of VSRs for soluble proteins of the lytic vacuole in vegetative cells remains controversial. Here, we provide evidence that VSR1, VSR3, and VSR4 are involved in sorting soluble lytic vacuolar and PSV proteins in vegetative cells. In protoplasts from leaf tissues of vsr1vsr3 and vsr1vsr4 but not vsr5vsr6, and rmr1rmr2 and rmr3rmr4 double mutants, soluble lytic vacuolar (Arabidopsis aleurain-like protein:green fluorescent protein [GFP] and carboxypeptidase Y:GFP and PSV (phaseolin) proteins, but not the vacuolar membrane protein Arabidopsis βFructosidase4:GFP, exhibited defects in their trafficking; they accumulated to the endoplasmic reticulum with an increased secretion into medium. The trafficking defects in vsr1vsr4 protoplasts were rescued by VSR1 or VSR4 but not VSR5 or AtRMR1. Furthermore, of the luminal domain swapping mutants between VSR1 and VSR5, the mutant with the luminal domain of VSR1, but not that of VSR5, rescued the trafficking defects of Arabidopsis aleurain-like protein:GFP and phaseolin in vsr1vsr4 protoplasts. Based on these results, we propose that VSR1, VSR3, and VSR4, but not other VSRs, are involved in sorting soluble lytic vacuolar and PSV proteins for their trafficking to the vacuoles in vegetative cells.Two different types of vacuoles have been identified in plant cells. One of them is the lytic vacuole (LV) that is present in vegetative cells, and the other is the protein storage vacuole (PSV) that is present in seed cells (Frigerio et al., 2008; Zouhar and Rojo, 2009; De Marcos Lousa et al., 2012). These two types of vacuoles have different functions. The LV carries out various functions such as osmotic pressure regulation, various hydrolytic activities, detoxification, and homeostasis of calcium and sodium ions. For some of these aspects LV is analogous to the vacuole in yeast (Saccharomyces cerevisiae) or lysosomes in animal cells. In contrast, the PSV is unique in plants and stores a large amount of proteins and minerals that are necessary for seed germination. To perform these functions, vacuoles need a large number of proteins.The organellar proteins destined for vacuoles have to be transported from the endoplasmic reticulum (ER) via a process called protein trafficking. This has been extensively studied in many different eukaryotic cell types, including plant cells. In general, proteins that belong to various endomembrane compartments are cotranslationally translocated into the ER and then transported through the Golgi apparatus and other intermediate compartments depending on their final destinations (Jurgens, 2004; Jolliffe et al., 2005; Sato and Nakano, 2007; Hwang and Robinson, 2009; Reyes et al., 2011). Vesicles are used to transport proteins from one compartment to another. Another important aspect is the specific targeting of organellar proteins. For this, organellar proteins carry a specific sorting or targeting signal that can be a sequence motif generated intrinsically or added posttranslationally (Hadlington and Denecke, 2000; Robinson et al., 2005; Hwang, 2008). The sequence motifs are recognized specifically by sorting receptors localized at the organelles that serve as donor compartments in trafficking pathways (Bassham and Raikhel, 2000; De Marcos Lousa et al., 2012).Two different types of sorting receptors, receptor homology-transmembrane-RING H2 domain proteins (RMRs) and vacuolar sorting receptors (VSRs), have been shown to be involved in the trafficking of vacuolar proteins. It has been proposed that RMRs function as a sorting receptor for storage proteins (Park et al., 2005; Hinz et al., 2007; Wang et al., 2011a). RMRs are type I membrane proteins and those in the luminal domain specifically interact with the C-terminal vacuolar sorting sequence (ctVSS) of storage proteins (Park et al., 2005; Shen et al., 2011). In addition, overexpression of an AtRMR1 deletion mutant inhibits the trafficking of phaseolin to the PSV, but not the protein trafficking to the LV, in protoplasts from leaf cells (Park et al., 2005). VSRs have been identified from various plant species and shown to specifically interact with the sorting motif of vacuolar proteins, which is known as the sequence-specific vacuolar sorting signal (ssVSS) or N-terminal propeptide (Ahmed et al., 1997; Hadlington and Denecke, 2000; Masclaux et al., 2005; Robinson et al., 2005; Hwang, 2008). In plant cells, the majority of VSRs localize to the prevacuolar compartment (PVC), which is the intermediate organelle between the trans-Golgi network (TGN) and vacuole (Tse et al., 2004; daSilva et al., 2005; Miao et al., 2006). In addition, a minor portion of VSR1 localizes to the TGN in plant cells, which supports the notion that VSRs recycle to the TGN from the PVC for sorting of their cargo proteins (Kim et al., 2010). Recent studies in plant cells questioned this concept and proposed other mechanisms for sorting vacuolar proteins. In the alternative proposal, sorting of vacuolar proteins may occur at the ER, and the VSRs may recycle from the TGN to the ER (Castelli and Vitale, 2005; Niemes et al., 2010). VSRs that were once thought to function as sorting receptors at the TGN for the LV proteins (daSilva et al., 2005; Foresti et al., 2010; Kim et al., 2010) have an additional function in the protein trafficking to the PSV in seed cells (Shimada et al., 2003; Zouhar et al., 2010). By using a genetic approach, it has been shown that among seven Arabidopsis (Arabidopsis thaliana) VSRs, VSR1, VSR3, and VSR4 play a role in trafficking of 12S globulins and 2S albumins in seed cells.The VSR isoforms involved in the protein trafficking to the PSV also exist in vegetative tissues (Laval et al., 1999; Kim et al., 2010; Zouhar et al., 2010). Mutations in both VSR1 and VSR4 cause secretion of AtAleurain, but not other LV proteins, into the apoplasts. Thus, it is not clearly understood what is the physiological role of AtVSRs in vegetative tissues (except for their role in vacuolar trafficking of AtAleurain), and what are the VSRs of other vacuolar proteins. In previous studies, it was demonstrated that overexpression of mutant forms of VSR1, VSR2, or BP80 of pea (Pisum sativum), a close homolog of VSR3 and VSR4, in protoplasts from wild-type plants affects trafficking of proteins to the LV (daSilva et al., 2005; Foresti et al., 2010; Kim et al., 2010). In this study, we utilized various VSR and RMR mutant plants and examined the effect of these mutations on the trafficking of LV and PSV proteins in protoplasts. These studies demonstrated that VSR1, VSR3, and VSR4, but not other VSRs and RMRs, are involved in trafficking of soluble LV and PSV proteins in vegetative cells. Further, the luminal domain but not the cytosolic tail of VSRs contains the determinant for the sorting specificity.  相似文献   

12.
Adaptor protein (AP) complexes play critical roles in protein sorting among different post-Golgi pathways by recognizing specific cargo protein motifs. Among the five AP complexes (AP-1–AP-5) in plants, AP-4 is one of the most poorly understood; the AP-4 components, AP-4 cargo motifs, and AP-4 functional mechanism are not known. Here, we identify the AP-4 components and show that the AP-4 complex regulates receptor-mediated vacuolar protein sorting by recognizing VACUOLAR SORTING RECEPTOR1 (VSR1), which was originally identified as a sorting receptor for seed storage proteins to target protein storage vacuoles in Arabidopsis (Arabidopsis thaliana). From the vacuolar sorting mutant library GREEN FLUORESCENT SEED (GFS), we isolated three gfs mutants that accumulate abnormally high levels of VSR1 in seeds and designated them as gfs4, gfs5, and gfs6. Their responsible genes encode three (AP4B, AP4M, and AP4S) of the four subunits of the AP-4 complex, respectively, and an Arabidopsis mutant (ap4e) lacking the fourth subunit, AP4E, also had the same phenotype. Mass spectrometry demonstrated that these four proteins form a complex in vivo. The four mutants showed defects in the vacuolar sorting of the major storage protein 12S globulins, indicating a role for the AP-4 complex in vacuolar protein transport. AP4M bound to the tyrosine-based motif of VSR1. AP4M localized at the trans-Golgi network (TGN) subdomain that is distinct from the AP-1-localized TGN subdomain. This study provides a novel function for the AP-4 complex in VSR1-mediated vacuolar protein sorting at the specialized domain of the TGN.Membrane trafficking in plants shares many fundamental features with those in yeast and animals (Bassham et al., 2008). In general, vacuolar proteins are synthesized on the rough endoplasmic reticulum and then transported to vacuoles via the Golgi apparatus (Xiang et al., 2013; Robinson and Pimpl, 2014). The vacuolar trafficking in plants has been studied by monitoring the transport of reporter proteins to lytic vacuoles in vegetative cells and tissues (Jin et al., 2001; Pimpl et al., 2003; Miao et al., 2008; Niemes et al., 2010). Recently, seed storage proteins became a model cargo for monitoring the transport of endogenous vacuolar proteins in plants (Shimada et al., 2003a; Sanmartín et al., 2007; Isono et al., 2010; Pourcher et al., 2010; Uemura et al., 2012; Shirakawa et al., 2014). During seed maturation, a large amount of storage proteins are synthesized and sorted to specialized vacuoles, the protein storage vacuoles (PSVs). To properly deliver vacuolar proteins, sorting receptors play a critical role in recognizing the vacuole-targeting signal of the proteins. VACUOLAR PROTEIN SORTING10 and Man-6-P receptor function as sorting receptors for vacuolar/lysosomal proteins in the trans-Golgi network (TGN) of yeast and mammals, respectively. The best-characterized sorting receptors in plants are VACUOLAR SORTING RECEPTOR (VSR) family proteins (De Marcos Lousa et al., 2012). VSRs have been shown to function in sorting both storage proteins to PSVs (Shimada et al., 2003a; Fuji et al., 2007) and lytic cargos to lytic vacuoles (Zouhar et al., 2010).To sort the receptors in the TGN into vacuoles/lysosomes, the adaptor protein (AP) complex binds the cytosolic domain of the receptors. The AP complexes form evolutionarily conserved machinery that mediates the post-Golgi trafficking in eukaryotic cells (Robinson, 2004). There are five types of AP complexes, AP-1 to AP-5. The functions of AP-1, AP-2, and AP-3 have been established. AP-1 appears to be involved in trafficking between the TGN and endosomes (Hirst et al., 2012), AP-2 is involved in clathrin-mediated endocytosis (McMahon and Boucrot, 2011), and AP-3 is involved in protein trafficking from the TGN/endosomes to the vacuole/lysosomes (Dell’Angelica, 2009). However, little is known about AP-4 and AP-5. Mammalian AP-4 may be involved in basolateral sorting in polarized cells and in the transport of specific cargo proteins, such as the amyloid precursor protein APP, from the TGN to endosomes (Burgos et al., 2010). The fifth AP complex, AP-5, was recently identified, and its orthologs are widely conserved in the eukaryotic genomes (Hirst et al., 2011). The AP complexes exist as heterotetrameric proteins that consist of two large subunits (β1-5 and one each of ɣ/α/δ/ε/ζ), one medium subunit (µ1-5), and one small subunit (σ1-5). The sorting mechanism is best characterized for the medium (µ) subunit, which is known to recognize the Tyr-based YXXФ motif (where Ф represents Leu, Ile, Phe, Met, or Val) that is present in the cytosolic domains of cargo proteins (Ohno et al., 1995). Mutations of the YXXФ motif abolish the interaction with µ and alter the subcellular localization of the cargo proteins.The genome of Arabidopsis (Arabidopsis thaliana) contains all five sets of putative AP genes (Bassham et al., 2008; Hirst et al., 2011). The function of AP-4 in membrane trafficking and its physiological roles in plants are largely unknown. In this study, we identified and characterized the AP-4 complex in Arabidopsis. Mutants lacking the AP-4 subunits exhibited defects in VSR1-mediated vacuolar sorting of storage proteins in seeds. Our results provide new insights into the receptor-mediated vacuolar trafficking in post-Golgi pathways.  相似文献   

13.
Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate that vacuolar convolution is accompanied by acidification of the vacuole in fava bean (Vicia faba) guard cells during abscisic acid (ABA)–induced stomatal closure. Vacuolar acidification is necessary for the rapid stomatal closure induced by ABA, since a double mutant of the vacuolar H+-ATPase vha-a2 vha-a3 and vacuolar H+-PPase mutant vhp1 showed delayed stomatal closure. Furthermore, we provide evidence for the critical role of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] in changes in pH and morphology of the vacuole. Single and double Arabidopsis thaliana null mutants of phosphatidylinositol 3-phosphate 5-kinases (PI3P5Ks) exhibited slow stomatal closure upon ABA treatment compared with the wild type. Moreover, an inhibitor of PI3P5K reduced vacuolar acidification and convolution and delayed stomatal closure in response to ABA. Taken together, these results suggest that rapid ABA-induced stomatal closure requires PtdIns(3,5)P2, which is essential for vacuolar acidification and convolution.  相似文献   

14.
The transport of a viral genome from cell to cell is enabled by movement proteins (MPs) targeting the cell periphery to mediate the gating of plasmodesmata. Given their essential role in the development of viral infection, understanding the regulation of MPs is of great importance. Here, we show that cauliflower mosaic virus (CaMV) MP contains three tyrosine-based sorting signals that interact with an Arabidopsis (Arabidopsis thaliana) μA-adaptin subunit. Fluorophore-tagged MP is incorporated into vesicles labeled with the endocytic tracer N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide. The presence of at least one of the three endocytosis motifs is essential for internalization of the protein from the plasma membrane to early endosomes, for tubule formation, and for CaMV infection. In addition, we show that MP colocalizes in vesicles with the Rab GTPase AtRAB-F2b, which is resident in prevacuolar late endosomal compartments that deliver proteins to the vacuole for degradation. Altogether, these results demonstrate that CaMV MP traffics in the endocytic pathway and that virus viability depends on functional host endomembranes.Membrane trafficking is essential in eukaryotic cells. Cellular membranes serve as a delivery system for newly synthesized proteins such as transporters and receptors exiting the endoplasmic reticulum after proper folding. They then transit through the Golgi complex, reaching the plasma membrane (PM) or the tonoplast via intermediate endomembrane compartments. Receptors and transporters returning from the PM are either recycled or targeted to the vacuole for degradation. Delivery and recycling sorting pathways overlap in the trans-Golgi network (TGN)/early endosome (EE), an intermediate compartment for both exocytosis and endocytosis (Reyes et al., 2011). In plant systems, the endoplasmic reticulum and PM provide membrane continuity between cells through the connections made by plasmodesmata (PD), cytoplasmic channels that regulate traffic in the symplasm (Maule et al., 2011).The selective transport of macromolecules between different compartments of the endomembrane system is mediated by coat proteins promoting the generation of small cargo-trafficking coated vesicles (Spang, 2008). The recognition and recruitment of cargo proteins are mediated by so-called adaptor complexes (AP complexes [AP-1–AP-4]; Robinson, 2004) one of which, AP-1, is localized on the TGN/EE and endosomes, whereas AP-2 is in the PM. The μ-subunit of AP complexes is devoted to cargo protein selection via a specific and well-characterized interaction with a Tyr-sorting signal, YXXΦ, where Φ is a bulky hydrophobic residue and X is any amino acid (Bonifacino and Dell’Angelica, 1999). YXXΦ motifs are present in the cytoplasmic tail of many proteins integral to the PM and TGN/EE and have been found in the movement proteins (MPs) of some viruses (Laporte et al., 2003; Haupt et al., 2005). Plant viruses are obligate parasites that exploit host components to move within the cell and from cell to cell into the vascular system for systemic invasion of the host. Virus movement, which requires the passage of macromolecules through PD connections, is mediated by one or more virus-encoded MPs with the help of the host cytoskeleton and/or endomembranes (Harries et al., 2010). While most MPs act to increase the size exclusion limit of PD to facilitate the passage of the viral nucleoprotein complex, other MPs are assembled in tubules that pass inside highly modified PD and transport encapsidated particles through their lumen.Here, we focus on this second group of tubule-forming MPs and examine the intracellular trafficking of cauliflower mosaic virus (CaMV) MP. The MP encoded by CaMV forms tubules guiding encapsidated virus particle cell-to-cell transport via an indirect MP-virion interaction (Stavolone et al., 2005; Sánchez-Navarro et al., 2010). However, how CaMV MP (and the other tubule-forming MPs) targets the PM and forms tubules remains to be elucidated. Tubule-forming MPs do not require an intact cytoskeleton for PM targeting (Huang et al., 2000; Pouwels et al., 2002) and/or tubule formation (Laporte et al., 2003). However, suppression of tubule formation upon treatment with brefeldin A (BFA), a specific inhibitor of secretion or endocytosis, suggests the involvement of the endomembrane system in correct functioning of some tubule-forming MPs (Huang et al., 2000; Laporte et al., 2003). In this study, we examined the three Tyr-sorting motifs in CaMV MP and show that each of the three domains interacts directly with subunit μ of an Arabidopsis (Arabidopsis thaliana) AP complex. Mutations in these domains revert in the viral context to maintain CaMV viability. MP is found in endosomal compartments labeled by AtRAB-F2b (ARA7) and N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide (FM4-64). The presence of at least one functional YXXΦ domain is essential for the localization of MP to endosomes and for tubule assembly but is not required for MP targeting to the PM. We provide several lines of evidence to show CaMV MP trafficking in the endocytic pathway. Our findings are discussed in the light of the recent demonstration that the TGN/EE functions as a major hub controlling secretory and endocytic pathways in plants.  相似文献   

15.
Membrane trafficking is required during plant immune responses, but its contribution to the hypersensitive response (HR), a form of programmed cell death (PCD) associated with effector-triggered immunity, is not well understood. HR is induced by nucleotide binding-leucine-rich repeat (NB-LRR) immune receptors and can involve vacuole-mediated processes, including autophagy. We previously isolated lazarus (laz) suppressors of autoimmunity-triggered PCD in the Arabidopsis thaliana mutant accelerated cell death11 (acd11) and demonstrated that the cell death phenotype is due to ectopic activation of the LAZ5 NB-LRR. We report here that laz4 is mutated in one of three VACUOLAR PROTEIN SORTING35 (VPS35) genes. We verify that LAZ4/VPS35B is part of the retromer complex, which functions in endosomal protein sorting and vacuolar trafficking. We show that VPS35B acts in an endosomal trafficking pathway and plays a role in LAZ5-dependent acd11 cell death. Furthermore, we find that VPS35 homologs contribute to certain forms of NB-LRR protein-mediated autoimmunity as well as pathogen-triggered HR. Finally, we demonstrate that retromer deficiency causes defects in late endocytic/lytic compartments and impairs autophagy-associated vacuolar processes. Our findings indicate important roles of retromer-mediated trafficking during the HR; these may include endosomal sorting of immune components and targeting of vacuolar cargo.  相似文献   

16.
The cycling of vacuolar sorting receptors (VSRs) between early and late secretory pathway compartments is regulated by signals in the cytosolic tail, but the exact pathway is controversial. Here, we show that receptor targeting in tobacco (Nicotiana tabacum) initially involves a canonical coat protein complex II–dependent endoplasmic reticulum-to-Golgi bulk flow route and that VSR–ligand interactions in the cis-Golgi play an important role in vacuolar sorting. We also show that a conserved Glu is required but not sufficient for rate-limiting YXXɸ-mediated receptor trafficking. Protein–protein interaction studies show that the VSR tail interacts with the μ-subunits of plant or mammalian clathrin adaptor complex AP1 and plant AP4 but not that of plant and mammalian AP2. Mutants causing a detour of full-length receptors via the cell surface invariantly cause the secretion of VSR ligands. Therefore, we propose that cycling via the plasma membrane is unlikely to play a role in biosynthetic vacuolar sorting under normal physiological conditions and that the conserved Ile-Met motif is mainly used to recover mistargeted receptors. This occurs via a fundamentally different pathway from the prevacuolar compartment that does not mediate recycling. The role of clathrin and clathrin-independent pathways in vacuolar targeting is discussed.  相似文献   

17.
Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid–induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR.  相似文献   

18.
The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H+-pyrophosphatase (V-PPase) and the vacuolar H+-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH.  相似文献   

19.
20.
Abscisic acid (ABA) is a key plant hormone involved in diverse physiological and developmental processes, including abiotic stress responses and the regulation of stomatal aperture and seed germination. Abscisic acid glucosyl ester (ABA-GE) is a hydrolyzable ABA conjugate that accumulates in the vacuole and presumably also in the endoplasmic reticulum. Deconjugation of ABA-GE by the endoplasmic reticulum and vacuolar β-glucosidases allows the rapid formation of free ABA in response to abiotic stress conditions such as dehydration and salt stress. ABA-GE further contributes to the maintenance of ABA homeostasis, as it is the major ABA catabolite exported from the cytosol. In this work, we identified that the import of ABA-GE into vacuoles isolated from Arabidopsis (Arabidopsis thaliana) mesophyll cells is mediated by two distinct membrane transport mechanisms: proton gradient-driven and ATP-binding cassette (ABC) transporters. Both systems have similar Km values of approximately 1 mm. According to our estimations, this low affinity appears nevertheless to be sufficient for the continuous vacuolar sequestration of ABA-GE produced in the cytosol. We further demonstrate that two tested multispecific vacuolar ABCC-type ABC transporters from Arabidopsis exhibit ABA-GE transport activity when expressed in yeast (Saccharomyces cerevisiae), which also supports the involvement of ABC transporters in ABA-GE uptake. Our findings suggest that the vacuolar ABA-GE uptake is not mediated by specific, but rather by several, possibly multispecific, transporters that are involved in the general vacuolar sequestration of conjugated metabolites.Abscisic acid (ABA) is a major plant hormone involved in various physiological and developmental processes. ABA signaling is fundamental in plant responses to abiotic stresses, including drought, cold, osmotic, and salt stress (Cutler et al., 2010). The best-characterized function of ABA is the regulation of stomatal aperture in response to environmental signals, such as soil and air humidity, temperature, and CO2 concentration (Nilson and Assmann, 2007; Kim et al., 2010). However, ABA also has important functions in seed development, dormancy, and germination (Holdsworth et al., 2008), lateral root formation (Galvan-Ampudia and Testerink, 2011), and leaf senescence (Lim et al., 2007). Besides, ABA is not restricted only to plants; it was also identified to have functions in species from all kingdoms, including humans, and may even have universal functions (e.g. in UV-B stress response; Tossi et al., 2012).ABA is synthesized de novo from the carotenoid zeaxanthin, whereby the first ABA-specific biosynthetic step occurs in the plastid and the final two steps take place in the cytosol (Nambara and Marion-Poll, 2005). The catabolism of ABA is mediated via oxidative and Glc conjugation pathways (Nambara and Marion-Poll, 2005). The ABA 8′-hydroxylation catalyzed by P450 cytochromes of the CYP707A subfamily represents the predominant catabolic pathway of ABA and has been demonstrated to be a key regulatory step in ABA action (Kushiro et al., 2004). The major oxidative ABA catabolites, phaseic acid (PA) and dihydroxyphaseic acid (DPA), exhibit lower and no biological activity, respectively (Sharkey and Raschke, 1980; Kepka et al., 2011). The conjugation of ABA and its oxidative catabolites PA and DPA with Glc catalyzed by UDP-glucosyltransferases represents the other mechanism of ABA inactivation. Abscisic acid glucosyl ester (ABA-GE) appears to be the major conjugate, which was found in various organs of different plant species (Piotrowska and Bajguz, 2011). In contrast to the oxidative pathway, the inactivation of ABA by Glc conjugation is reversible, and hydrolysis of ABA-GE catalyzed by β-glucosidases results in free ABA (Dietz et al., 2000; Lee et al., 2006; Xu et al., 2012). ABA-GE levels were shown to substantially increase during dehydration and specific seed developmental and germination stages (Boyer and Zeevaart, 1982; Hocher et al., 1991; Chiwocha et al., 2003). Furthermore, ABA-GE is present in the xylem sap, where it was shown to increase under drought, salt, and osmotic stress (Sauter et al., 2002). Apoplastic ABA β-glucosidases in leaves have been suggested to mediate the release of free ABA from xylem-borne ABA-GE (Dietz et al., 2000). Therefore, ABA-GE was proposed to be a root-to-shoot signaling molecule. However, under drought stress, ABA-mediated stomatal closure occurs independently of root ABA biosynthesis (Christmann et al., 2007). Thus, the involvement of ABA-GE in root-to-shoot signaling of water stress conditions remains to be revealed (Goodger and Schachtman, 2010).The intracellular compartmentalization of ABA and its catabolites is important for ABA homeostasis (Xu et al., 2013). Free ABA, PA, and DPA mainly occur in the extravacuolar compartments. In contrast to these oxidative ABA catabolites, ABA-GE has been reported to accumulate in vacuoles (Bray and Zeevaart, 1985; Lehmann and Glund, 1986). Since the sequestered ABA-GE can instantaneously provide ABA via a one-step hydrolysis, this conjugate and its compartmentalization may be of importance in the maintenance of ABA homeostasis. The identification of the endoplasmic reticulum (ER)-localized β-glucosidase AtBG1 that specifically hydrolyzes ABA-GE suggests that ABA-GE is also present in the ER (Lee et al., 2006). Plants lacking functional AtBG1 exhibit pronounced ABA-deficiency phenotypes, including sensitivity to dehydration, impaired stomatal closure, earlier germination, and lower ABA levels. Hydrolysis of ER-localized ABA-GE, therefore, represents an alternative pathway for the generation of free cytosolic ABA (Lee et al., 2006; Bauer et al., 2013). This finding raised the question of whether vacuolar ABA-GE also has an important function as an ABA reservoir. This hypothesis was supported by recent identifications of two vacuolar β-glucosidases that hydrolyze vacuolar ABA-GE (Wang et al., 2011; Xu et al., 2013). The vacuolar AtBG1 homolog AtBG2 forms high molecular weight complexes, which are present at low levels under normal conditions but significantly accumulate under dehydration stress. AtBG2 knockout plants displayed a similar, although less pronounced, phenotype to AtBG1 mutants: elevated sensitivity to drought and salt stress, while overexpression of AtBG2 resulted in exactly the opposite effect (i.e. increased drought tolerance). The other identified vacuolar ABA-GE glucosidase, BGLU10, exhibits comparable mutant phenotypes to AtBG2 (Wang et al., 2011). This redundancy may explain the less pronounced mutant phenotypes of vacuolar ABA-GE glucosidases compared with the ER-localized AtBG1. Moreover, the fact that overexpression of the vacuolar AtBG2 is able to phenotypically complement AtBG1 deletion mutants indicates an important role of vacuolar ABA-GE as a pool for free ABA during the abiotic stress response (Xu et al., 2012).The described accumulation and functions of vacuolar ABA-GE raise the question of by which mechanisms ABA-GE is sequestered into the vacuoles. To answer this question, we synthesized radiolabeled ABA-GE and characterized the ABA-GE transport into isolated mesophyll vacuoles. We showed that the vacuole comprises two distinct transport systems involved in the accumulation of ABA-GE: proton gradient-dependent and directly energized ATP-binding cassette (ABC)-type transport. In a targeted approach, we furthermore show that the Arabidopsis (Arabidopsis thaliana) ABC transporters AtABCC1 and AtABCC2 exhibit ABA-GE transport activity in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号