首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non–muscle-invasive bladder cancers (NMIBCs) are tumors confined to the mucosa or the mucosa/submucosa. An important challenge in treatment of NMIBC is both high recurrence and high progression rates. Consequently, more efficacious intravesical treatment regimes are in demand. Inhibition of the cell’s DNA repair systems is a new promising strategy to improve cancer therapy, and proliferating cell nuclear antigen (PCNA) is a new promising target. PCNA is an essential scaffold protein in multiple cellular processes including DNA replication and repair. More than 200 proteins, many involved in stress responses, interact with PCNA through the AlkB homologue 2 PCNA-interacting motif (APIM), including several proteins directly or indirectly involved in repair of DNA interstrand crosslinks (ICLs). In this study, we targeted PCNA with a novel peptide drug containing the APIM sequence, ATX-101, to inhibit repair of the DNA damage introduced by the chemotherapeutics. A bladder cancer cell panel and two different orthotopic models of bladder cancer in rats, the AY-27 implantation model and the dietary BBN induction model, were applied. ATX-101 increased the anticancer efficacy of the ICL-inducing drug mitomycin C (MMC), as well as bleomycin and gemcitabine in all bladder cancer cell lines tested. Furthermore, we found that ATX-101 given intravesically in combination with MMC penetrated the bladder wall and further reduced the tumor growth in both the slow growing endogenously induced and the rapidly growing transplanted tumors. These results suggest that ATX-101 has the potential to improve the efficacy of current MMC treatment in NMIBC.  相似文献   

2.
Proliferating cell nuclear antigen (PCNA) is an essential protein for DNA replication, DNA repair, cell cycle regulation, chromatin remodeling, and epigenetics. Many proteins interact with PCNA through the PCNA interacting peptide (PIP)-box or the newly identified AlkB homolog 2 PCNA interacting motif (APIM). The xeroderma pigmentosum group A (XPA) protein, with a central but somewhat elusive role in nucleotide excision repair (NER), contains the APIM sequence suggesting an interaction with PCNA. With an in vivo based approach, using modern techniques in live human cells, we show that APIM in XPA is a functional PCNA interacting motif and that efficient NER of UV lesions is dependent on an intact APIM sequence in XPA. We show that XPA−/− cells complemented with XPA containing a mutated APIM sequence have increased UV sensitivity, reduced repair of cyclobutane pyrimidine dimers and (6–4) photoproducts, and are consequently more arrested in S phase as compared to XPA−/− cells complemented with wild type XPA. Notably, XPA colocalizes with PCNA in replication foci and is loaded on newly synthesized DNA in undamaged cells. In addition, the TFIIH subunit XPD, as well as XPF are loaded on DNA together with XPA, and XPC and XPG colocalize with PCNA in replication foci. Altogether, our results suggest a presence of the NER complex in the vicinity of the replisome and a novel role of NER in post-replicative repair.  相似文献   

3.
4.
Because of essential roles of DNA damage response (DDR) in the maintenance of genomic integrity, cellular homeostasis, and tumor suppression, targeting DDR has become a promising therapeutic strategy for cancer treatment. However, the benefits of cancer therapy targeting DDR are limited mainly due to the lack of predictive biomarkers. To address this challenge, we performed CRISPR screens to search for genetic vulnerabilities that affect cells’ response to DDR inhibition. By undertaking CRISPR screens with inhibitors targeting key DDR mediators, i.e. ATR, ATM, DNAPK and CHK1, we obtained a global and unbiased view of genetic interactions with DDR inhibition. Specifically, we identified YWHAE loss as a key determinant of sensitivity to CHK1 inhibition. We showed that KLHL15 loss protects cells from DNA damage induced by ATM inhibition. Moreover, we validated that APEX1 loss sensitizes cells to DNAPK inhibition. Additionally, we compared the synergistic effects of combining different DDR inhibitors and found that an ATM inhibitor plus a PARP inhibitor induced dramatic levels of cell death, probably through promoting apoptosis. Our results enhance the understanding of DDR pathways and will facilitate the use of DDR-targeting agents in cancer therapy.  相似文献   

5.
The ubiquitin–proteasome system (UPS) is indispensable to the protein quality control in eukaryotic cells. Due to the remarkable clinical success of using proteasome inhibitors for clinical treatment of multiple myeloma, it is anticipated that targeting the UPS upstream of the proteasome step be an effective strategy for cancer therapy. Deubiquitinases (DUB) are proteases that remove ubiquitin from target proteins and therefore regulate multiple cellular processes including some signaling pathways altered in cancer cells. Thus, targeting DUB is a promising strategy for cancer drug discovery. Previously, we have reported that metal complexes, such as copper and gold complexes, can disrupt the UPS via suppressing the activity of 19S proteasome-associated DUBs and/or of the 20S proteasomes, thereby inducing cancer cell death. In this study, we found that cadmium pyrithione (CdPT) treatment led to remarkable accumulation of ubiquitinated proteins in cultured cancer cells and primary leukemia cells. CdPT potently inhibited the activity of proteasomal DUBs (USP14 and UCHL5), but slightly inhibited 20S proteasome activity. The anti-cancer activity of CdPT was associated with triggering apoptosis via caspase activation. Moreover, treatment with CdPT inhibited proteasome function and repressed tumor growth in animal xenograft models. Our results show that cadmium-containing complex CdPT may function as a novel proteasomal DUB inhibitor and suggest appealing prospects for cancer treatment.  相似文献   

6.
7.
Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.  相似文献   

8.
Exposure of cells to ionizing radiation (IR) induces, not only, activation of multiple signaling pathways that play critical roles in cell fate determination, but also alteration of molecular pathways involved in cell death or survival. Recently, DNA methylation has been established as a critical epigenetic process involved in the regulation of gene expression in cancer cells, suggesting that DNA methylation inhibition may be an effective cancer treatment strategy. Because alterations of gene expression by DNA methylation have been considered to influence radioresponsiveness, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine (5-aza-dC), on radiosensitivity. In addition, we investigated the underlying cellular mechanisms of combination treatments of ionizing irradiation (IR) and 5-aza-dC in human colon cancer cells. Colon cancer cell lines were initially tested for radiation sensitivity by IR in vitro and were treated with two different doses of 5-aza-dC. Survival of these cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and clonogenic assays. The effects of 5-aza-dC along with irradiation on cell growth, cell cycle distribution, apoptosis, and apoptosis-related gene expression were examined. Combination irradiation treatment with 5-aza-dC significantly decreased growth activity compared with irradiation treatment alone or with 5-aza-dC treatment alone. The percentage of HCT116 cells in the sub-G1 phase and their apoptotic rate was increased when cells were treated with irradiation in combination with 5-aza-dC compared with either treatment alone. These observations were strongly supported by increased caspase activity, increased comet tails using comet assays, and increased protein levels of apoptosis-associated molecules (caspase 3/9, cleaved PARP). Our data demonstrated that 5-aza-dC enhanced radiosensitivity in colon cancer cells, and the combination effects of 5-aza-dC with radiation showed greater cellular effects than that of single treatment, suggesting that the combination of 5-aza-dC and radiation has the potential to become a clinical strategy for the treatment of cancer.  相似文献   

9.
Despite recent improvements in patient outcomes using newer androgen receptor (AR) pathway inhibitors, treatment resistance in castrate resistant prostate cancer (CRPC) continues to remain a clinical problem. Co-targeting alternate resistance pathways are of significant interest to treat CRPC and delay the onset of resistance. Both the AKT and MEK signaling pathways become activated as prostate cancer develops resistance to AR-targeted therapies. This pre-clinical study explores co-targeting these pathways in AR-positive prostate cancer models. Using various in vitro models of prostate cancer disease states including androgen dependent (LNCaP), CRPC (V16D and 22RV1) and ENZ-resistant prostate cancer (MR49C and MR49F), we evaluate the relevance of targeting both AKT and MEK pathways. Our data reveal that AKT inhibition induces apoptosis and inhibits cell growth in PTEN null cell lines independently of their sensitivity to hormone therapy; however, AKT inhibition had no effect on the PTEN positive 22RV1 cell line. Interestingly, we found that MEK inhibition had greater effect on 22RV1 cells compared to LNCaP, V16D or ENZ-resistant cells MR49C and MR49F cells. In vitro, combination AKT and MEK blockade had evidence of synergy observed in some cell lines and assays, but this was not consistent across all results. In vivo, the combination of AKT and MEK inhibition resulted in more consistent tumor growth inhibition of MR49F xenografts and longer disease specific survival compared to AKT inhibitor monotherapy. As in our in vitro study, 22RV1 xenografts were more resistant to AKT inhibition while they were more sensitive to MEK inhibition. Our results suggest that targeting AKT and MEK in combination may be a valuable strategy in prostate cancer when both pathways are activated and further support the importance of characterizing the dominant oncogenic pathway in each patient’s tumor in order to select optimal therapy.  相似文献   

10.
机体细胞在多种化学物质和内外环境不断攻击下会诱发DNA损伤。为了维持基因组的稳定性,细胞内拥有一系列完善而精确的细胞应答机制来保护基因组DNA的完整性。细胞首先通过DNA损伤检测点,然后通过一系列细胞信号转导通路,启动细胞周期阻滞,进而介导细胞修复或凋亡。大量研究表明泛素化作为一种重要的蛋白质翻译后修饰方式,参与调控了多种细胞生理过程。近期研究表明,DNA损伤导致复制应激可诱发PCNA的翻译后泛素化修饰,泛素化修饰的PCNA可能参与了多种DNA损伤应激过程,影响细胞选择不同的DNA损伤应答途径,导致细胞截然不同的转归。因此,更好地了解PCNA泛素化的作用及其影响DNA损伤应答通路可为我们更深入地了解人类细胞如何调控异常的DNA代谢过程和癌症的发生和发展机制提供依据。  相似文献   

11.
机体细胞在多种化学物质和内外环境不断攻击下会诱发DNA损伤。为了维持基因组的稳定性,细胞内拥有一系列完善而精确的细胞应答机制来保护基因组DNA的完整性。细胞首先通过DNA损伤检测点,然后通过一系列细胞信号转导通路,启动细胞周期阻滞,进而介导细胞修复或凋亡。大量研究表明泛素化作为一种重要的蛋白质翻译后修饰方式,参与调控了多种细胞生理过程。近期研究表明,DNA损伤导致复制应激可诱发PCNA的翻译后泛素化修饰,泛素化修饰的PCNA可能参与了多种DNA损伤应激过程,影响细胞选择不同的DNA损伤应答途径,导致细胞截然不同的转归。因此,更好地了解PCNA泛素化的作用及其影响DNA损伤应答通路可为我们更深入地了解人类细胞如何调控异常的DNA代谢过程和癌症的发生和发展机制提供依据。  相似文献   

12.
13.
14.
Most efforts thus far have been devoted to develop apoptosis inducers for cancer treatment. However, apoptotic pathway deficiencies are a hallmark of cancer cells. We propose that one way to bypass defective apoptotic pathways in cancer cells is to induce necrotic cell death. Here we show that selective induction of necrotic cell death can be achieved by activation of the DNA damage response pathways. While β-lapachone induces apoptosis through E2F1 checkpoint pathways, necrotic cell death can be selectively induced by β-lapachone in a variety of cancer cells. We found that β-lapachone, unlike DNA damaging chemotherapeutic agents, transiently activates PARP1, a main regulator of the DNA damage response pathway, both in vitro and in vivo. This occurs within minutes of exposure to β-lapachone, resulting in selective necrotic cell death. Inhibition of PAR blocked β-lapachone-induced necrosis. Furthermore, necrotic cell death induced by β-lapachone was significantly reduced in PARP1 knockout cell lines. Our data suggest that selective necrotic cell death can be induced through activation of DNA damage response pathways, supporting the idea of selective necrotic cell death as a therapeutic strategy  相似文献   

15.
Proliferating cell nuclear antigen (PCNA), through its interaction with various proteins involved in DNA synthesis, cell cycle regulation, and DNA repair, plays a central role in maintaining genome stability. We previously reported a novel cancer associated PCNA isoform (dubbed caPCNA), which was significantly expressed in a broad range of cancer cells and tumor tissues, but not in non-malignant cells. We found that the caPCNA-specific antigenic site lies between L126 and Y133, a region within the interconnector domain of PCNA that is known to be a major binding site for many of PCNA''s interacting proteins. We hypothesized that therapeutic agents targeting protein-protein interactions mediated through this region may confer differential toxicity to normal and malignant cells. To test this hypothesis, we designed a cell permeable peptide containing the PCNA L126-Y133 sequence. Here, we report that this peptide selectively kills human neuroblastoma cells, especially those with MYCN gene amplification, with much less toxicity to non-malignant human cells. Mechanistically, the peptide is able to block PCNA interactions in cancer cells. It interferes with DNA synthesis and homologous recombination-mediated double-stranded DNA break repair, resulting in S-phase arrest, accumulation of DNA damage, and enhanced sensitivity to cisplatin. These results demonstrate conceptually the utility of this peptide for treating neuroblastomas, particularly, the unfavorable MYCN-amplified tumors.  相似文献   

16.
The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM.  相似文献   

17.
DNA damage tolerance (DDT) pathways, including translesion synthesis (TLS) and additional unknown mechanisms, enable recovery from replication arrest at DNA lesions. DDT pathways are regulated by post-translational modifications of proliferating cell nuclear antigen (PCNA) at its K164 residue. In particular, mono-ubiquitination by the ubiquitin ligase RAD18 is crucial for Polη-mediated TLS. Although the importance of modifications of PCNA to DDT pathways is well known, the relevance of its homo-trimer form, in which three K164 residues are present in a single ring, remains to be elucidated. Here, we show that multiple units of a PCNA homo-trimer are simultaneously mono-ubiquitinated in vitro and in vivo. RAD18 catalyzed sequential mono-ubiquitinations of multiple units of a PCNA homo-trimer in a reconstituted system. Exogenous PCNA formed hetero-trimers with endogenous PCNA in WI38VA13 cell transformants. When K164R-mutated PCNA was expressed in these cells at levels that depleted endogenous PCNA homo-trimers, multiple modifications of PCNA complexes were reduced and the cells showed defects in DDT after UV irradiation. Notably, ectopic expression of mutant PCNA increased the UV sensitivities of Polη-proficient, Polη-deficient, and REV1-depleted cells, suggesting the disruption of a DDT pathway distinct from the Polη- and REV1-mediated pathways. These results suggest that simultaneous modifications of multiple units of a PCNA homo-trimer are required for a certain DDT pathway in human cells.  相似文献   

18.
Recepteur d’origine nantais (Ron) is overexpressed in a panel of pancreatic cancer cells and tissue samples from pancreatic cancer patients. Ron can be activated by its ligand macrophage stimulating protein (MSP), thereby activating oncogenic signaling pathways. Crosstalk between Ron and EGFR, c-Met, or IGF-1R may provide a mechanism underlying drug resistance. Thus, targeting Ron may represent a novel therapeutic strategy. IMC-RON8 is the first Ron monoclonal antibody (mAb) entering clinical trial for targeting Ron overexpression. Our studies show IMC-RON8 downmodulated Ron expression in pancreatic cancer cells and significantly blocked MSP-stimulated Ron activation, downstream Akt and ERK phosphorylation, and survivin mRNA expression. IMC-RON8 hindered MSP-induced cell migration and reduced cell transformation. Histone deacetylase inhibitors (HDACi) are reported to target expression of various genes through modification of nucleosome histones and non-histone proteins. Our work shows HDACi TSA and Panobinostat (PS) decreased Ron mRNA and protein expression in pancreatic cancer cells. PS also reduced downstream signaling of pAkt, survivin, and XIAP, as well as enhanced cell apoptosis. Interestingly, PS reduced colony formation in Ron knockdown cells to a greater extent than Ron scramble control cells in colony formation and soft agarose assays. IMC-RON8 could also sensitize pancreatic cancer cells to PS, as reflected by reduced colony numbers and size in combination treatment with IMC-RON8 and PS compared to single treatment alone. The co-treatment further reduced Ron expression and pAkt, and increased PARP cleavage compared to either treatment alone. This study suggests the potential for a novel combination approach which may ultimately be of value in treatment of pancreatic cancer.  相似文献   

19.
Breast cancer is currently among the most common cancers in women, with almost 200,000 new cases diagnosed annually. Dysregulation of DNA repair pathways allows cells to accumulate damage and eventually mutations, with a subsequent reduction in DNA repair capacity in breast tissue, leading to tumorigenesis. One component of the DNA damage repair pathway is RAD52 motif‐containing 1 (RDM1), but the specific role of RDM1 in breast cancer and the underlying mechanism remain unclear. Here, we examined the role played by RDM1 in breast cancer cell culture using the HBL100 and MCF‐7 breast cancer cell lines. Disruption of RDM1 reduced in vitro cell proliferation and promoted apoptosis. Knockdown of RDM1 also induced up‐regulation of p53 levels, whereas RAD51 and RAD52, both involved in DNA repair, were down‐regulated. In addition, the in vivo growth of RDM1‐deficient cells was significantly repressed, suggesting that RDM1 is a novel oncogenic protein in human breast cancer cells. This study reveals a link between the DNA damage response pathway and oncogenic functionality in breast cancer. Accordingly, therapeutic targeting of RDM1 is a potential treatment strategy for breast cancer and overcoming drug resistance.  相似文献   

20.
Preferential targeting of apoptosis in tumor versus normal cells   总被引:5,自引:0,他引:5  
Elimination of cancer cells by early apoptosis is preferred over other forms of cell growth inhibition. Apoptosis directly leads to tumor regression and reduces risks of selecting more aggressive and/or drug-resistant phenotypes that are often responsible for tumor regrowth and treatment failure. Although DNA damage by anticancer drugs is commonly recognized as an apoptotic stimulus, there is enormous variability in the magnitude and timing of such effects. Especially potent and rapid apoptosis seems to be a hallmark of various alkylating anticancer drugs that are regarded as DNA-reactive agents but are observed to react mainly with cellular proteins. Our studies with such dual-action drugs (irofulven, oxaliplatin) suggest that not only DNA damage, but also protein damage, contributes to apoptosis induction. DNA damage is well known to initiate death-signaling pathways leading to mitochondrial dysfunction. Protein damage, in turn, can distort cell redox homeostasis, which facilitates apoptosis execution. Such dual effects can be particularly lethal to tumor cells, which tend to function under pro-oxidative conditions. In contrast to tumor cells that are highly susceptible, normal cells show marginal apoptotic responses to the dual action drugs. This protection of normal cells might reflect their greater ability to buffer pro-oxidative changes and quickly restore redox homeostasis, despite substantial drug uptake and macromolecular binding. Importantly, by targeting the death process at multiple points, DNA- and protein-damaging drugs can be less vulnerable to various bypass mechanisms possible with single targets. The reviewed studies provide a proof of concept that differential apoptosis targeting in cancer versus normal cells can be a basis for tumor selectivity of anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号