首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia plays a critical role in the tumor microenvironment of high-grade gliomas by promoting the glioma stem cell (GSC)-like phenotype, which displays resistance to standard therapies. We tested three glioblastoma multiforme xenograft lines (xenolines) against γ(1)34.5-deleted recombinant oncolytic herpes simplex virus (oHSV) C101 under 1% (hypoxia) and 20.8% (normoxia) oxygen tension for effects on oHSV infectivity, replication, and cytotoxicity in all tumor cells and CD133(+) GSCs. Expression levels of CD133, a putative GSC marker, and CD111 (nectin-1), an adhesion molecule that is the most efficient method for HSV entry, increased significantly under hypoxia in all three xenolines. Despite increased CD111 expression under hypoxic conditions, oHSV infectivity, cytotoxicity and viral recovery were not improved or were diminished in all three xenolines under hypoxia. In contrast, wild-type HSV-1 equally infected xenoline cells in normoxia and hypoxia, suggesting that the 34.5 mutation plays a role in the decreased C101 infectivity in hypoxia. Importantly, CD133(+) cells were not more resistant to oHSV than CD133(-) tumor cells regardless of oxygen tension. Furthermore, CD133 expression decreased as viral dose increased in two of the xenolines suggesting that up-regulation of CD133 in hypoxia was not the cause of reduced viral efficacy. Our findings that oHSV infectivity and cytotoxicity were diminished under hypoxia in several GBM xenolines likely have important implications for clinical applications of oHSV therapies, especially considering the vital role of hypoxia in the microenvironment of GBM tumors.  相似文献   

2.
Recently, investigators showed that mice with syngeneic murine gliomas that were treated with a neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal cells. Previous studies have shown antitumor effects of other oHSV against a number of adult tumors including hepatocellular carcinoma and renal cell carcinoma. The purpose of the current study was to investigate the oncolytic potential of M002 against difficult to treat pediatric liver and kidney tumors. We showed that the oHSV, M002, infected, replicated, and decreased cell survival in hepatoblastoma, malignant rhabdoid kidney tumor, and renal sarcoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly increased survival and decreased tumor growth. Finally, these studies showed that the primary entry protein for oHSV, CD111 (nectin-1) was present in human hepatoblastoma and malignant rhabdoid kidney tumor specimens. We concluded that M002 effectively targeted these rare aggressive tumor types and that M002 may have potential for use in children with unresponsive or relapsed pediatric solid tumors.  相似文献   

3.
The ICP34.5 protein of herpes simplex virus (HSV) is involved in many aspects of viral pathogenesis; promoting neurovirulence, inhibiting interferon-induced shutoff of protein synthesis, interacting with PCNA and TBK1, inhibiting dendritic cell (DC) maturation, and binding to Beclin 1 to interfere with autophagy. Because of its key role in neuropathogenicity, the γ34.5 gene is deleted in all oncolytic HSVs (oHSVs) currently in clinical trial for treating malignant gliomas. Unfortunately, deletion of γ34.5 attenuates virus replication in cancer cells, especially human glioblastoma stem cells (GSCs). To develop new oHSVs for use in the brain and that replicate in GSCs, we explored the effect of deleting the γ34.5 Beclin 1 binding domain (BBD). To ensure cancer selectivity and safety, we inactivated the ICP6 gene (UL39, large subunit of ribonucleotide reductase), constructing ICP6 mutants with different γ34.5 genotypes: Δ68HR-6, intact γ34.5; Δ68H-6, γ34.5 BBD deleted; and 1716-6, γ34.5 deleted. Multimutated Δ68H-6 exhibited minimal neuropathogenicity in HSV-1-susceptible mice, as opposed to Δ68H and Δ68HR-6. It replicated well in human glioma cell lines and GSCs, effectively killing cells in vitro and prolonging survival of mice bearing orthotopic brain tumors. In contrast, 1716 and 1716-6 barely replicated in GSCs. Infection of glioma cells with Δ68H-6 and 1716-6 induced autophagy and increased phosphorylation of eIF2α, while inhibition of autophagy, by Beclin 1 short hairpin RNA (shRNA) knockdown or pharmacological inhibition, had no effect on virus replication or phosphorylated eIF2α (p-eIF2α) levels. Thus, Δ68H-6 represents a new oHSV vector that is safe and effective against a variety of brain tumor models.  相似文献   

4.
Despite intensive research efforts and therapeutic advances over the last few decades, the pediatric neural crest tumor, neuroblastoma, continues to be responsible for over 15% of pediatric cancer deaths. Novel therapeutic options are needed for this tumor. Recently, investigators have shown that mice with syngeneic murine gliomas treated with an engineered, neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal neural cells. We hypothesized that M002 would also be effective in the neural crest tumor, neuroblastoma. We showed that M002 infected, replicated, and decreased survival in neuroblastoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly decreased tumor growth, and that this effect was augmented with the addition of ionizing radiation. Importantly, survival could be increased by subsequent doses of radiation without re-dosing of the virus. Finally, these studies showed that the primary entry protein for oHSV, CD111 was expressed by numerous neuroblastoma cell lines and was also present in human neuroblastoma specimens. We concluded that M002 effectively targeted neuroblastoma and that this oHSV may have potential for use in children with unresponsive or relapsed neuroblastoma.  相似文献   

5.
Tumor virotherapy has been and continues to be used in clinical trials. One barrier to effective viral oncolysis, consisting of the interferon (IFN) response induced by viral infection, is inhibited by valproic acid (VPA) and other histone deacetylase inhibitors (HDACi). Innate immune cell recruitment and activation have been shown to be deleterious to the efficacy of oncolytic herpes simplex virus (oHSV) infection, and in this report we demonstrate that VPA limits this deleterious response. VPA, administered prior to oHSV inoculation in an orthotopic glioblastoma mouse model, resulted in a decline in NK and macrophage recruitment into tumor-bearing brains at 6 and 24 h post-oHSV infection. Interestingly, there was a robust rebound of recruitment of these cells at 72 h post-oHSV infection. The observed initial decline in immune cell recruitment was accompanied by a reduction in their activation status. VPA was also found to have a profound immunosuppressive effect on human NK cells in vitro. NK cytotoxicity was abrogated following exposure to VPA, consistent with downmodulation of cytotoxic gene expression of granzyme B and perforin at the mRNA and protein levels. In addition, suppression of gamma IFN (IFN-γ) production by VPA was associated with decreased STAT5 phosphorylation and dampened T-BET expression. Despite VPA-mediated immune suppression, mice were not at significantly increased risk for HSV encephalitis. These findings indicate that one of the avenues by which VPA enhances oHSV efficacy is through initial suppression of immune cell recruitment and inhibition of inflammatory cell pathways within NK cells.  相似文献   

6.
7.
The viral protein Nef is a virulence factor that plays multiple roles during the early and late phases of human immunodeficiency virus (HIV) replication. Nef regulates the cell surface expression of critical proteins (including down-regulation of CD4 and major histocompatibility complex class I), T-cell receptor signaling, and apoptosis, inducing proapoptotic effects in uninfected bystander cells and antiapoptotic effects in infected cells. It has been proposed that Nef intersects the CD40 ligand signaling pathway in macrophages, leading to modification in the pattern of secreted factors that appear able to recruit and activate T lymphocytes, rendering them susceptible to HIV infection. There is also increasing evidence that in vitro cell treatment with Nef induces signaling effects. Exogenous Nef treatment is able to induce apoptosis in uninfected T cells, maturation in dendritic cells, and suppression of CD40-dependent immunoglobulin class switching in B cells. Previously, we reported that Nef treatment of primary human monocyte-derived macrophages (MDMs) induces a cycloheximide-independent activation of NF-kappaB and the synthesis and secretion of a set of chemokines/cytokines that activate STAT1 and STAT3. Here, we show that Nef treatment is capable of hijacking cellular signaling pathways, inducing a very rapid regulatory response in MDMs that is characterized by the rapid and transient phosphorylation of the alpha and beta subunits of the IkappaB kinase complex and of JNK, ERK1/2, and p38 mitogen-activated protein kinase family members. In addition, we have observed the activation of interferon regulatory factor 3, leading to the synthesis of beta interferon mRNA and protein, which in turn induces STAT2 phosphorylation. All of these effects require Nef myristoylation.  相似文献   

8.
Natural phytochemicals are attracting increasing interest as anticancer agents. The aim of this study is to evaluate the therapeutic potential of geraniin, a major ellagitannin extracted from Geranium sibiricum L., in human glioma. Human U87 and LN229 glioma cells were treated with different concentrations of geraniin, and cell viability, apoptosis, and gene expression were assessed. The involvement of STAT3 signaling in the action of geraniin was examined. We found that geraniin treatment for 48 h significantly (P < 0.05) impaired the phosphorylation of STAT3 and reduced the expression of downstream target genes Bcl-xL, Mcl-1, Bcl-2, and cyclin D1. Exposure to geraniin led to a concentration-dependent decline in cell viability and increase in apoptosis in glioma cells, but had no significant impact on the viability of normal human astrocytes. Measurement of caspase-3 activity showed that geraniin-treated U87 and LN229 cells showed a 1.8–2.5-fold higher caspase-3 activity than control cells. Overexpression of constitutively active STAT3 significantly (P < 0.05) reversed geraniin-mediated growth suppression and apoptosis, which was accompanied by restoration of Bcl-xL, Mcl-1, Bcl-2, and cyclin D1 expression. In an xenograft tumor mouse model, geraniin treatment significantly retarded tumor growth and induced apoptosis. Western blot analysis confirmed the suppression of STAT3 phosphorylation in glioma xenograft tumors by geraniin. Taken together, these data suggest that geraniin exerts growth-suppressive and pro-apoptotic effects on glioma cells via inhibition of STAT3 signaling and may have therapeutic benefits in malignant gliomas.  相似文献   

9.
Sohn SY  Hearing P 《Journal of virology》2011,85(15):7555-7562
Tyrosine phosphorylation and nuclear translocation of STAT1 indicate activation of interferon (IFN) signal transduction pathways. Here, we demonstrate that tyrosine-phosphorylated STAT1 is targeted by a unique mechanism in adenovirus (Ad)-infected cells. Ad is known to suppress IFN-inducible gene expression; however, we observed that Ad infection prolongs the tyrosine phosphorylation of STAT1 induced by alpha IFN in infected cells. To understand this paradoxical effect, we examined the subcellular localization of STAT1 following Ad infection and found that nuclear, tyrosine-phosphorylated STAT1 accumulates at viral replication centers. This form of STAT1 colocalized with newly synthesized viral DNA. Viral DNA replication, but not viral late gene expression, is required for the regulation of STAT1 phosphorylation. Our results indicate that Ad infection regulates STAT1 dephosphorylation rather than STAT1 phosphorylation. Consistent with this idea, we show that Ad infection disrupts the interaction between STAT1 and its cognate protein tyrosine phosphatase, TC45. Our findings indicate that Ad sequesters phosphorylated STAT1 at viral replication centers and inhibits STAT dephosphorylation. This report suggests a strategy employed by Ad to counteract an active form of STAT1 in the nucleus of infected cells.  相似文献   

10.

Background

We have developed multiple stable cell lines containing subgenomic HCV RNA that are resistant to treatment with interferon alpha (IFN-α. Characterization of these IFN-α resistant replicon cells showed defects in the phosphorylation and nuclear translocation of STAT1 and STAT2 proteins due to a defective Jak-STAT pathway.

Methodology/Principal Findings

In this study, we have developed an alternative strategy to overcome interferon resistance in a cell culture model by improving intracellular STAT1 signaling. An engineered STAT1-CC molecule with double cysteine substitutions in the Src-homology 2 (SH2) domains of STAT1 (at Ala-656 and Asn-658) efficiently phosphorylates and translocates to the nucleus of IFN-resistant cells in an IFN-γ dependent manner. Transfection of a plasmid clone containing STAT1-CC significantly activated the GAS promoter compared to wild type STAT1 and STAT3. The activity of the engineered STAT1-CC is dependent upon the phosphorylation of tyrosine residue 701, since the construct with a substituted phenylalanine residue at position 701 (STAT1-CC-Y701F) failed to activate GAS promoter in the replicon cells. Intracellular expression of STAT1-CC protein showed phosphorylation and nuclear translocation in the resistant cell line after IFN-γ treatment. Transient transfection of STAT1-CC plasmid clone into an interferon resistant cell line resulted in inhibition of viral replication and viral clearance in an IFN-γ dependent manner. Furthermore, the resistant replicon cells transfected with STAT1-CC constructs significantly up regulated surface HLA-1 expression when compared to the wild type and Y to F mutant controls.

Conclusions

These results suggest that modification of the SH2 domain of the STAT1 molecule allows for improved IFN-γ signaling through increased STAT1 phosphorylation, nuclear translocation, HLA-1 surface expression, and prolonged interferon antiviral gene activation.  相似文献   

11.
12.
13.
14.
The severe acute respiratory syndrome (SARS) epidemic was caused by the spread of a previously unrecognized infectious agent, the SARS-associated coronavirus (SARS-CoV). Here we show that SARS-CoV could inhibit both virus- and interferon (IFN)-dependent signaling, two key steps of the antiviral response. We mapped a strong inhibitory activity to SARS-CoV nonstructural protein 1 (nsp1) and show that expression of nsp1 significantly inhibited the activation of all three virus-dependent signaling pathways. We show that expression of nsp1 significantly inhibited IFN-dependent signaling by decreasing the phosphorylation levels of STAT1 while having little effect on those of STAT2, JAK1, and TYK2. We engineered an attenuated mutant of nsp1 in SARS-CoV through reverse genetics, and the resulting mutant virus was viable and replicated as efficiently as wild-type virus in cells with a defective IFN response. However, mutant virus replication was strongly attenuated in cells with an intact IFN response. Thus, nsp1 is likely a virulence factor that contributes to pathogenicity by favoring SARS-CoV replication.  相似文献   

15.
Previous studies have demonstrated that Leishmania donovani attenuates STAT1-mediated signaling in macrophages; however it is not clear whether other species of Leishmania, which cause cutaneous disease, also interfere with macrophage IFN-gamma signaling. Therefore, we determined the effect of Leishmania major and Leishmania mexicana infection on STAT1-mediated IFN-gamma signaling pathway in J774A.1 and RAW264.7 macrophages. We found that both L. major and L. mexicana suppressed IFNgammaRalpha (alpha subunit of interferon gamma receptor) and IFN-gammaRbeta (beta subunit of interferon gamma receptor) expression, reduced levels of total Jak1 and Jak2, and down-regulated IFN-gamma-induced Jak1, Jak2 and STAT1 activation. The effect of L. mexicana infection on Jak1, Jak2 and STAT1 activation was more profound when compared with L. major. Although tyrosine phosphorylation of STAT1alpha was decreased in IFN-gamma stimulated macrophages infected with L. major or L. mexicana, those infected with L. mexicana showed a significant increase in phosphorylation of the dominant negative STAT1beta. These findings indicate that L. major and L. mexicana attenuate STAT1-mediated IFN-gamma signaling in macrophages. Furthermore, they also demonstrate that L. mexicana preferentially enhances tyrosine phosphorylation of dominant negative STAT1beta, which may be one of the several survival mechanisms used by this parasite to evade the host defense mechanisms.  相似文献   

16.
17.
18.
19.
Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.  相似文献   

20.
Despite dramatic advances in adjuvant therapies, patients with malignant glioma face a bleak prognosis. Because many adjuvant therapies seek to induce glioma apoptosis, strategies that lower thresholds for the induction of apoptosis may improve patient outcomes. Therefore, elucidation of the biological mechanisms that underlie resistance to current therapies is needed to develop new therapeutic strategies. Here we proposed a novel mechanism of proapoptotic effect induced by a pharmacological peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist, troglitazone, that facilitates caspase signaling in human glioma cells. Troglitazone activates protein-tyrosine phosphatase (PTP)-1B, which subsequently reduces phosphotyrosine 705 STAT3 (pY705-STAT3) via a PPARgamma-independent pathway. Reduction of pY705-STAT3 in glioma cells caused down-regulation of FLIP (FADD-like IL-1beta-converting enzyme-inhibitory protein) and Bcl-2. Furthermore, troglitazone induced Ser-392 phosphorylation of p53 via a PPARgamma-dependent pathway and up-regulation of Bax in a p53 wild-type glioma. When given with tumor necrosis factor-related apoptosis-inducing ligand or caspase-dependent chemotherapeutic agents, such as etoposide and paclitaxel, troglitazone exhibited a synergistic effect by facilitating caspase-8/9 activities. A PPARgamma antagonist, GW9662, did not block this effect, although a PTP inhibitor abrogated it. Knockdown of STAT3 by STAT3-small interfering RNA negated the inhibitory effect of PTP inhibitor on troglitazone, indicating that troglitazone uses a STAT3 inactivation mechanism that makes caspase-8/9 activities susceptible to cytotoxic agents in glioma cells and that PTP1B plays a critical role in the down-regulation of activated STAT3, as well as FLIP and Bcl-2. When taken with caspase-dependent anti-neoplastic agents, troglitazone may be a promising drug for use against malignant gliomas because it facilitates the caspase cascade, thereby lowering thresholds for the apoptosis induction of glioma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号