首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
During embryogenesis, tissue specification is triggered by the expression of a unique combination of developmental genes and their expression in time and space is crucial for successful development. Synexpression groups are batteries of spatiotemporally co-expressed genes that act in shared biological processes through their coordinated expression. Although several synexpression groups have been described in numerous vertebrate species, the regulatory mechanisms that orchestrate their common complex expression pattern remain to be elucidated. Here we performed a pilot screen on 560 genes of the vertebrate model system medaka (Oryzias latipes) to systematically identify synexpression groups and investigate their regulatory properties by searching for common regulatory cues. We find that synexpression groups share DNA motifs that are arranged in various combinations into cis-regulatory modules that drive co-expression. In contrast to previous assumptions that these genes are located randomly in the genome, we discovered that genes belonging to the same synexpression group frequently occur in synexpression clusters in the genome. This work presents a first repertoire of synexpression group common signatures, a resource that will contribute to deciphering developmental gene regulatory networks.  相似文献   

8.
MOTIVATION: MicroRNAs (miRNAs) and mRNAs constitute an important part of gene regulatory networks, influencing diverse biological phenomena. Elucidating closely related miRNAs and mRNAs can be an essential first step towards the discovery of their combinatorial effects on different cellular states. Here, we propose a probabilistic learning method to identify synergistic miRNAs involving regulation of their condition-specific target genes (mRNAs) from multiple information sources, i.e. computationally predicted target genes of miRNAs and their respective expression profiles. RESULTS: We used data sets consisting of miRNA-target gene binding information and expression profiles of miRNAs and mRNAs on human cancer samples. Our method allowed us to detect functionally correlated miRNA-mRNA modules involved in specific biological processes from multiple data sources by using a balanced fitness function and efficient searching over multiple populations. The proposed algorithm found two miRNA-mRNA modules, highly correlated with respect to their expression and biological function. Moreover, the mRNAs included in the same module showed much higher correlations when the related miRNAs were highly expressed, demonstrating our method's ability for finding coherent miRNA-mRNA modules. Most members of these modules have been reported to be closely related with cancer. Consequently, our method can provide a primary source of miRNA and target sets presumed to constitute closely related parts of gene regulatory pathways.  相似文献   

9.
10.
11.
12.
13.
14.
15.
In a research environment dominated by reductionist approaches to brain disease mechanisms, gene network analysis provides a complementary framework in which to tackle the complex dysregulations that occur in neuropsychiatric and other neurological disorders. Gene–gene expression correlations are a common source of molecular networks because they can be extracted from high‐dimensional disease data and encapsulate the activity of multiple regulatory systems. However, the analysis of gene coexpression patterns is often treated as a mechanistic black box, in which looming ‘hub genes’ direct cellular networks, and where other features are obscured. By examining the biophysical bases of coexpression and gene regulatory changes that occur in disease, recent studies suggest it is possible to use coexpression networks as a multi‐omic screening procedure to generate novel hypotheses for disease mechanisms. Because technical processing steps can affect the outcome and interpretation of coexpression networks, we examine the assumptions and alternatives to common patterns of coexpression analysis and discuss additional topics such as acceptable datasets for coexpression analysis, the robust identification of modules, disease‐related prioritization of genes and molecular systems and network meta‐analysis. To accelerate coexpression research beyond modules and hubs, we highlight some emerging directions for coexpression network research that are especially relevant to complex brain disease, including the centrality–lethality relationship, integration with machine learning approaches and network pharmacology .  相似文献   

16.
17.
Highly conserved non-coding elements (CNEs) linked to genes involved in embryonic development have been hypothesised to correspond to cis-regulatory modules due to their ability to induce tissue-specific expression patterns. However, attempts to prove their requirement for normal development or for the correct expression of the genes they are associated with have yielded conflicting results. Here, we show that CNEs at the vertebrate Sox21 locus are crucial for Sox21 expression in the embryonic lens and that loss of Sox21 function interferes with normal lens development. Using different expression assays in zebrafish we find that two CNEs linked to Sox21 in all vertebrates contain lens enhancers and that their removal from a reporter BAC abolishes lens expression. Furthermore inhibition of Sox21 function after the injection of a sox21b morpholino into zebrafish leads to defects in lens development. These findings identify a direct link between sequence conservation and genomic function of regulatory sequences. In addition to this we provide evidence that putative Sox binding sites in one of the CNEs are essential for induction of lens expression as well as enhancer function in the CNS. Our results show that CNEs identified in pufferfish-mammal whole-genome comparisons are crucial developmental enhancers and hence essential components of gene regulatory networks underlying vertebrate embryogenesis.  相似文献   

18.
Chen L  Li W  Zhang L  Wang H  He W  Tai J  Li X  Li X 《PloS one》2011,6(9):e24495

Background

Disease genes that interact cooperatively play crucial roles in the process of complex diseases, yet how to analyze and represent their associations is still an open problem. Traditional methods have failed to represent direct biological evidences that disease genes associate with each other in the pathogenesis of complex diseases. Molecular networks, assumed as ‘a form of biological systems’, consist of a set of interacting biological modules (functional modules or pathways) and this notion could provide a promising insight into deciphering this topic.

Methodology/Principal Findings

In this paper, we hypothesized that disease genes might associate by virtue of the associations between biological modules in molecular networks. Then we introduced a novel disease gene interaction pathway representation and analysis paradigm, and managed to identify the disease gene interaction pathway for 61 known disease genes of coronary artery disease (CAD), which contained 46 disease-risk modules and 182 interaction relationships. As demonstrated, disease genes associate through prescribed communication protocols of common biological functions and pathways.

Conclusions/Significance

Our analysis was proved to be coincident with our primary hypothesis that disease genes of complex diseases interact with their neighbors in a cooperative manner, associate with each other through shared biological functions and pathways of disease-risk modules, and finally cause dysfunctions of a series of biological processes in molecular networks. We hope our paradigm could be a promising method to identify disease gene interaction pathways for other types of complex diseases, affording additional clues in the pathogenesis of complex diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号