首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world’s most abundant vegetable oil and a commodity that has contributed significantly to Indonesia’s economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4–211.4 MtCO2 yr-1 under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55–60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia’s national emissions mitigation goal, while allowing oil palm area to double.  相似文献   

2.
Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large‐scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human‐modified landscapes.  相似文献   

3.
Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m?2 h?1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m?2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.  相似文献   

4.
Carbon emissions from drained peatlands converted to agriculture in South‐East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South‐East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land‐use plans with a focus on the reducing emissions from deforestation and degradation (REDD+)‐related Indonesian moratorium on granting new concession licences for industrial agriculture and logging. We find that, prior to 2010, 35% of South‐East Asian peatlands had been converted to agriculture, principally by smallholder farmers (15% of original peat extent) and industrial oil palm plantations (14%). These conversions resulted in 1.46–6.43 GtCO2 of emissions between 1990 and 2010. This legacy of historical clearances on deep‐peat areas will contribute 51% (4.43–11.45 GtCO2) of projected future peatland CO2 emissions over the period 2010–2130. In Indonesia, which hosts most of the region's peatland and where concession maps are publicly available, 70% of peatland conversion to agriculture occurred outside of known concessions for industrial plantation development, with smallholders accounting for 60% and industrial oil palm accounting for 34%. Of the remaining Indonesian peat swamp forest (PSF), 45% is not protected, and its conversion would amount to CO2 emissions equivalent to 0.7%–2.3% (5.14–14.93 Gt) of global fossil fuel and cement emissions released between 1990 and 2010. Of the peatland extent included in the moratorium, 48% was no longer forested, and of the PSF included, 40%–48% is likely to be affected by drainage impacts from agricultural areas and will emit CO2 over time. We suggest that recent legislation and policy in Indonesia could provide a means of meaningful emission reductions if focused on revised land‐use planning, PSF conservation both inside and outside agricultural concessions, and the development of agricultural practices based on rehabilitating peatland hydrological function.  相似文献   

5.
The world's agricultural system has come under increasing scrutiny recently as an important driver of global climate change, creating a demand for indicators that estimate the climatic impacts of agricultural commodities. Such carbon footprints, however, have in most cases excluded emissions from land‐use change and the proposed methodologies for including this significant emissions source suffer from different shortcomings. Here, we propose a new methodology for calculating land‐use change carbon footprints for agricultural commodities and illustrate this methodology by applying it to three of the most prominent agricultural commodities driving tropical deforestation: Brazilian beef and soybeans, and Indonesian palm oil. We estimate land‐use change carbon footprints in 2010 to be 66 tCO2/t meat (carcass weight) for Brazilian beef, 0.89 tCO2/t for Brazilian soybeans, and 7.5 tCO2/t for Indonesian palm oil, using a 10 year amortization period. The main advantage of the proposed methodology is its flexibility: it can be applied in a tiered approach, using detailed data where it is available while still allowing for estimation of footprints for a broad set of countries and agricultural commodities; it can be applied at different scales, estimating both national and subnational footprints; it can be adopted to account both for direct (proximate) and indirect drivers of land‐use change. It is argued that with an increasing commercialization and globalization of the drivers of land‐use change, the proposed carbon footprint methodology could help leverage the power needed to alter environmentally destructive land‐use practices within the global agricultural system by providing a tool for assessing the environmental impacts of production, thereby informing consumers about the impacts of consumption and incentivizing producers to become more environmentally responsible.  相似文献   

6.
The tropical peat swamp forests of Indonesia and Malaysia are unusual ecosystems that are rich in endemic species of flora, fauna and microbes despite their extreme acidic, anaerobic, nutrient poor conditions. They are an important refuge for many endangered species including orang utans. Ecosystem functioning is unusual: microbial decomposition is inhibited because the leaves are sclerophyllous and toxic to deter herbivory in the nutrient poor environment, yet bacteria are abundant and active in the surface layers of the peat, where they respire DOC leached from newly fallen leaves. The bacteria are subsequently consumed by aquatic invertebrates that are eaten by fish, and bacterially respired CO2 is assimilated by algae, so bacteria are thus vital to carbon and nutrient cycling. Peat swamp forests are highly sensitive to the impacts of logging, drainage and fire, due to the interdependence of the vegetation with the peat substrate, which relies on the maintenance of adequate water, canopy cover and leaf litter inputs. Even minor disturbances can increase the likelihood of fire, which is the major cause of CO2 emissions from regional peat swamp forests and which impact ecosystems worldwide by contributing to climate change. Indo-Malayan peat swamps affect the hydrology of surrounding ecosystems due to their large water storage capacity which slows the passage of floodwaters in wet seasons and maintains stream base flows during dry seasons. These forests are of global importance yet they are inadequately protected and vanishing rapidly, particularly due to agricultural conversion to oil palm, logging, drainage and annual fires.  相似文献   

7.
There are limited data for greenhouse gas (GHG) emissions from smallholder agricultural systems in tropical peatlands, with data for non-CO2 emissions from human-influenced tropical peatlands particularly scarce. The aim of this study was to quantify soil CH4 and N2O fluxes from smallholder agricultural systems on tropical peatlands in Southeast Asia and assess their environmental controls. The study was carried out in four regions in Malaysia and Indonesia. CH4 and N2O fluxes and environmental parameters were measured in cropland, oil palm plantation, tree plantation and forest. Annual CH4 emissions (in kg CH4 ha−1 year−1) were: 70.7 ± 29.5, 2.1 ± 1.2, 2.1 ± 0.6 and 6.2 ± 1.9 at the forest, tree plantation, oil palm and cropland land-use classes, respectively. Annual N2O emissions (in kg N2O ha−1 year−1) were: 6.5 ± 2.8, 3.2 ± 1.2, 21.9 ± 11.4 and 33.6 ± 7.3 in the same order as above, respectively. Annual CH4 emissions were strongly determined by water table depth (WTD) and increased exponentially when annual WTD was above −25 cm. In contrast, annual N2O emissions were strongly correlated with mean total dissolved nitrogen (TDN) in soil water, following a sigmoidal relationship, up to an apparent threshold of 10 mg N L−1 beyond which TDN seemingly ceased to be limiting for N2O production. The new emissions data for CH4 and N2O presented here should help to develop more robust country level ‘emission factors’ for the quantification of national GHG inventory reporting. The impact of TDN on N2O emissions suggests that soil nutrient status strongly impacts emissions, and therefore, policies which reduce N-fertilisation inputs might contribute to emissions mitigation from agricultural peat landscapes. However, the most important policy intervention for reducing emissions is one that reduces the conversion of peat swamp forest to agriculture on peatlands in the first place.  相似文献   

8.
Evaluating the annual sources and sinks of carbon from land-use change helps con-strain other terms in the global carbon cycle and may help countries choose how to comply with commitments for reduced emissions. This paper presents the results of recent analyses ofland-use change in China and tropical Asia. The original forest areas are estimated to have cov-ered 546×10~6 ha in tropical Asia and 425×10~6 ha in China. By 1850, 44% of China's forests had been cleared, and another 27% was lost between 1850 and 1980, leaving China with 13% forestcover (29% of the initial forest area). Tropical Asia is estimated to have lost 26% of its initial forestcover before 1850 and another 33% after 1850. The annual emissions of carbon from the two regions re-flect the different histories over the last 150 years, with China's emissions peaking in thelate 1950s (at 0.2-0.5 Pg C·a~(-1)) and tropical Asia's emissions peaking in 1990s (at 1.0 Pg C·a~(-1)). Despite the fact that most deforestation has been for new agricultural land, the majority ofthe lands cleared from forests in China are no longer croplands, but fallow or degraded shrublands.Unlike croplands, the origins of these other lands are poorly documented, and thus add consider-able uncertainty to estimates of flux before the 1980s. Nevertheless, carbon emissions from China seem to have decreased since the 1960s to nearly zero at present. In contrast, emissions of car-bon from tropical Asia were higher in the 1990s than that at any time in the past.  相似文献   

9.
Evaluating the annual sources and sinks of carbon from land-use changehelps constrain other terms in the global carbon cycle and may help countries choose how to comply with commitments for reduced emissions. This paper presents the results of recent analyses of land-use change in China and tropical Asia. The original forest areas are estimated to have covered 546×106 ha in tropical Asia and 425×106 ha in China. By 1850, 44% of China's forests had been cleared, and another 27% was lost between 1850 and 1980, leaving China with 13% forest cover (29% of the initial forest area). Tropical Asia is estimated to have lost 26%of its initial forest cover before 1850 and another 33% after 1850. The annual emissions of carbon from the two regions reflect the different histories over the last 150 years, with China's emissions peaking in the late 1950s (at 0.2-0.5 Pg C@a-1) and tropical Asia's emissions peaking in 1990s (at 1.0 Pg C@a-1). Despite the fact that most deforestation has been for new agricultural land, the majority of the lands cleared from forests in China are no longer croplands, but fallow or degraded shrublands. Unlike croplands, the origins of these other lands are poorly documented, and thus add considerable uncertainty to estimates of flux before the 1980s. Nevertheless, carbon emissions from China seem to have decreased since the 1960s to nearly zero at present. In contrast, emissions of carbon from tropical Asia were higher in the 1990s than that at any time in the past.  相似文献   

10.
Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990–2000 and 2000–2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990–2000 to about 93 million tons per year during 2000–2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions.  相似文献   

11.
We estimate changes in forest cover (deforestation and forest regrowth) in the tropics for the two last decades (1990–2000 and 2000–2010) based on a sample of 4000 units of 10 ×10 km size. Forest cover is interpreted from satellite imagery at 30 × 30 m resolution. Forest cover changes are then combined with pan‐tropical biomass maps to estimate carbon losses. We show that there was a gross loss of tropical forests of 8.0 million ha yr?1 in the 1990s and 7.6 million ha yr?1 in the 2000s (0.49% annual rate), with no statistically significant difference. Humid forests account for 64% of the total forest cover in 2010 and 54% of the net forest loss during second study decade. Losses of forest cover and Other Wooded Land (OWL) cover result in estimates of carbon losses which are similar for 1990s and 2000s at 887 MtC yr?1 (range: 646–1238) and 880 MtC yr?1 (range: 602–1237) respectively, with humid regions contributing two‐thirds. The estimates of forest area changes have small statistical standard errors due to large sample size. We also reduce uncertainties of previous estimates of carbon losses and removals. Our estimates of forest area change are significantly lower as compared to national survey data. We reconcile recent low estimates of carbon emissions from tropical deforestation for early 2000s and show that carbon loss rates did not change between the two last decades. Carbon losses from deforestation represent circa 10% of Carbon emissions from fossil fuel combustion and cement production during the last decade (2000–2010). Our estimates of annual removals of carbon from forest regrowth at 115 MtC yr?1 (range: 61–168) and 97 MtC yr?1 (53–141) for the 1990s and 2000s respectively are five to fifteen times lower than earlier published estimates.  相似文献   

12.
The Malaysian states of Sabah and Sarawak are global hotspots of forest loss and degradation due to timber and oil palm industries; however, the rates and patterns of change have remained poorly measured by conventional field or satellite approaches. Using 30 m resolution optical imagery acquired since 1990, forest cover and logging roads were mapped throughout Malaysian Borneo and Brunei using the Carnegie Landsat Analysis System. We uncovered ∼364,000 km of roads constructed through the forests of this region. We estimated that in 2009 there were at most 45,400 km2 of intact forest ecosystems in Malaysian Borneo and Brunei. Critically, we found that nearly 80% of the land surface of Sabah and Sarawak was impacted by previously undocumented, high-impact logging or clearing operations from 1990 to 2009. This contrasted strongly with neighbouring Brunei, where 54% of the land area remained covered by unlogged forest. Overall, only 8% and 3% of land area in Sabah and Sarawak, respectively, was covered by intact forests under designated protected areas. Our assessment shows that very few forest ecosystems remain intact in Sabah or Sarawak, but that Brunei, by largely excluding industrial logging from its borders, has been comparatively successful in protecting its forests.  相似文献   

13.
Carbon emissions from land‐use changes in tropical dry forest systems are poorly understood, although they are likely globally significant. The South American Chaco has recently emerged as a hot spot of agricultural expansion and intensification, as cattle ranching and soybean cultivation expand into forests, and as soybean cultivation replaces grazing lands. Still, our knowledge of the rates and spatial patterns of these land‐use changes and how they affected carbon emissions remains partial. We used the Landsat satellite image archive to reconstruct land‐use change over the past 30 years and applied a carbon bookkeeping model to quantify how these changes affected carbon budgets. Between 1985 and 2013, more than 142 000 km2 of the Chaco's forests, equaling 20% of all forest, was replaced by croplands (38.9%) or grazing lands (61.1%). Of those grazing lands that existed in 1985, about 40% were subsequently converted to cropland. These land‐use changes resulted in substantial carbon emissions, totaling 824 Tg C between 1985 and 2013, and 46.2 Tg C for 2013 alone. The majority of these emissions came from forest‐to‐grazing‐land conversions (68%), but post‐deforestation land‐use change triggered an additional 52.6 Tg C. Although tropical dry forests are less carbon‐dense than moist tropical forests, carbon emissions from land‐use change in the Chaco were similar in magnitude to those from other major tropical deforestation frontiers. Our study thus highlights the urgent need for an improved monitoring of the often overlooked tropical dry forests and savannas, and more broadly speaking the value of the Landsat image archive for quantifying carbon fluxes from land change.  相似文献   

14.
Heterotrophic respiration is a major component of the soil C balance however we critically lack understanding of its variation upon conversion of peat swamp forests in tropical areas. Our research focused on a primary peat swamp forest and two oil palm plantations aged 1 (OP2012) and 6 years (OP2007). Total and heterotrophic soil respiration were monitored over 13 months in paired control and trenched plots. Spatial variability was taken into account by differentiating hummocks from hollows in the forest; close to palm from far from palm positions in the plantations. Annual total soil respiration was the highest in the oldest plantation (13.8 ± 0.3 Mg C ha?1 year?1) followed by the forest and youngest plantation (12.9 ± 0.3 and 11.7 ± 0.4 Mg C ha?1 year?1, respectively). In contrast, the contribution of heterotrophic to total respiration and annual heterotrophic respiration were lower in the forest (55.1 ± 2.8%; 7.1 ± 0.4 Mg C ha?1 year?1) than in the plantations (82.5 ± 5.8 and 61.0 ± 2.3%; 9.6 ± 0.8 and 8.4 ± 0.3 Mg C ha?1 year?1 in the OP2012 and OP2007, respectively). The use of total soil respiration rates measured far from palms as an indicator of heterotrophic respiration, as proposed in the literature, overestimates peat and litter mineralization by around 21%. Preliminary budget estimates suggest that over the monitoring period, the peat was a net C source in all land uses; C loss in the plantations was more than twice the loss observed in the forest.  相似文献   

15.
Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non‐governmental organizations that signed the New York Declaration on Forests (NYDF). We assemble and refine a robust dataset to establish a 2001–2013 benchmark for average annual carbon emissions from gross tropical deforestation at 2.270 Gt CO2 yr?1. Brazil did not sign the NYDF, yet from 2001 to 2013, Brazil ranks first for both carbon emissions from gross tropical deforestation and reductions in those emissions – its share of the total declined from a peak of 69% in 2003 to a low of 20% in 2012. Indonesia, an NYDF signatory, is the second highest emitter, peaking in 2012 at 0.362 Gt CO2 yr?1 before declining to 0.205 Gt CO2 yr?1 in 2013. The other 14 NYDF tropical country signatories were responsible for a combined average of 0.317 Gt CO2 yr?1, while the other 86 tropical country non‐signatories were responsible for a combined average of 0.688 Gt CO2 yr?1. We outline two scenarios for achieving the 50% emission reduction target by 2020, both emphasizing the critical role of Brazil and the need to reverse the trends of increasing carbon emissions from gross tropical deforestation in many other tropical countries that, from 2001 to 2013, have largely offset Brazil's reductions. Achieving the target will therefore be challenging, even though it is in the self‐interest of the international community. Conserving rather than cutting down tropical forests requires shifting economic development away from a dependence on natural resource depletion toward recognition of the dependence of human societies on the natural capital that tropical forests represent and the goods and services they provide.  相似文献   

16.

Background

Forest conservation efforts are increasingly being implemented at the scale of sub-national jurisdictions in order to mitigate global climate change and provide other ecosystem services. We see an urgent need for robust estimates of historic forest carbon emissions at this scale, as the basis for credible measures of climate and other benefits achieved. Despite the arrival of a new generation of global datasets on forest area change and biomass, confusion remains about how to produce credible jurisdictional estimates of forest emissions. We demonstrate a method for estimating the relevant historic forest carbon fluxes within the Regency of Berau in eastern Borneo, Indonesia. Our method integrates best available global and local datasets, and includes a comprehensive analysis of uncertainty at the regency scale.

Principal Findings and Significance

We find that Berau generated 8.91 ± 1.99 million tonnes of net CO2 emissions per year during 2000–2010. Berau is an early frontier landscape where gross emissions are 12 times higher than gross sequestration. Yet most (85%) of Berau’s original forests are still standing. The majority of net emissions were due to conversion of native forests to unspecified agriculture (43% of total), oil palm (28%), and fiber plantations (9%). Most of the remainder was due to legal commercial selective logging (17%). Our overall uncertainty estimate offers an independent basis for assessing three other estimates for Berau. Two other estimates were above the upper end of our uncertainty range. We emphasize the importance of including an uncertainty range for all parameters of the emissions equation to generate a comprehensive uncertainty estimate–which has not been done before. We believe comprehensive estimates of carbon flux uncertainty are increasingly important as national and international institutions are challenged with comparing alternative estimates and identifying a credible range of historic emissions values.  相似文献   

17.
Large areas of Indonesian peatlands have been converted for agricultural and plantation forest purposes. This requires draining with associated CO2 emissions and fire risks. In order to identify alternative management regimes for peatlands, it is important to understand the sustainability of different peatland uses as well as the economic benefits peatlands supply under different land uses. This study explores the key sustainability issues in Indonesian peatlands, the ecosystem services supplied by peatlands, and potential responses to promote more sustainable peatland use. A literature review and spatial analysis were conducted. Based on predominantly government data, we estimate the amount of Indonesian peatlands that has been converted between 2000 and 2014. We quantify increases in oil palm and plantation forest crop production in this period, and we analyse key sustainability issues, i.e. peat fires and smoke-haze, soil subsidence and flood risk, CO2 emissions, loss of habitat (in protected areas), and social conflicts that influence sustainability of Indonesian peatlands management. Among others we show that CO2 emissions from peatlands in Indonesia can be estimated at between 350 and 400 million ton CO2 per year, and that encroachment of oil palm and plantation forestry (acacia, rubber) has taken place on 28% of protected areas. However, as we examine, the uncertainties involved are substantial. Based on our findings, we distil several implications for the management of the peatlands.  相似文献   

18.
Methane (CH4) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH4 emissions. Decreased wetland CH4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH4 emissions to investigate the impacts of the ENSO on CH4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.  相似文献   

19.
Conversion, drainage, and cultivation of tropical peatlands can change soil conditions, shifting the C balance of these systems, which is important for the global C cycle. We examined the effect of soil organic matter (SOM) quality and nutrients on CO2 production from peat decomposition using laboratory incubations of Indonesian peat soils from undrained forest in Kalimantan and drained oil palm plantations in Kalimantan and Sumatra. We found that oil palm soils had higher C/N and lower SOM quality than forest soils. Higher substrate quality and nutrient availability, particularly lower ratios of aromatic/aliphatic carbon and C/N, rather than total SOM or carbon, explained the higher rate of CO2 production by forest soils (10.80 ± 0.23 µg CO2–C g C h?1) compared to oil palm soils (5.34 ± 0.26 µg CO2–C g C h?1) from Kalimantan. These factors also explained lower rates in Sumatran oil palm (3.90 ± 0.25 µg CO2–C g C h?1). We amended peat with nitrogen (N), phosphorus (P), and glucose to further investigate observed substrate and nutrient constraints across the range of observed peat quality. Available N limited CO2 production, in unamended and amended soils. P addition raised CO2 production when substrate quality was high and initial P state was low. Glucose addition raised CO2 production in the presence of added N and P. Our results suggest that decline in SOM quality and nutrients associated with conversion may decrease substrate-driven rates of CO2 production from peat decomposition over time.  相似文献   

20.
A continuous rise in the global demand for palm oil has resulted in the large‐scale expansion of oil palm plantations and generated environmental controversy. Efforts to increase the sustainability of oil palm cultivation include the recycling of oil mill and pruning residues in the field, but this may increase soil methane (CH4) emissions. This study reports the results of yearlong field‐based measurements of soil nitrous oxide (N2O) and CH4 emissions from commercial plantations in North Sumatra, Indonesia. One experiment investigated the effects of soil‐water saturation on N2O and CH4 emissions from inorganic fertilizers and organic amendments by simulating 25 mm rainfall per day for 21 days. Three additional experiments focused on emissions from (a) inorganic fertilizer (urea), (b) combination of enriched mulch with urea and (c) organic amendments (empty fruit bunches, enriched mulch and pruned oil palm fronds) applied in different doses and spatial layouts (placed in inter‐row zones, piles, patches or bands) for a full year. The higher dose of urea led to a significantly higher N2O emissions with the emission factors ranging from 2.4% to 2.7% in the long‐term experiment, which is considerably higher than the IPCC standard of 1%. Organic amendments were a significant source of both N2O and CH4 emissions, but N2O emissions from organic amendments were 66%–86% lower than those from inorganic fertilizers. Organic amendments applied in piles emitted 63% and 71% more N2O and CH4, respectively, than when spread out. With twice the dose of organic amendments, cumulative emissions were up to three times greater. The (simulated) rainwater experiment showed that the increase in precipitation led to a significant increase in N2O emissions significantly, suggesting that the time of fertilization is a critical management option for reducing emissions. The results from this study could therefore help guide residue and nutrient management practices to reduce emissions while ensuring better nutrient recycling for sustainable oil palm production systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号