首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Castro JP  Carareto CM 《Genetica》2004,121(2):107-118
The molecular mechanisms that control P element transposition and determine its tissue specificity remain incompletely understood, although much information has been compiled about this element in the last decade. This review summarizes the currently available information about P element transposition, P-M hybrid dysgenesis and P cytotype features, P element-encoded repressors, and regulation of transposition.  相似文献   

2.
This paper examines the conditions under which self-regulated rates of transposition can evolve in populations of transposable elements infecting sexually reproducing hosts. Models of the evolution of both cis-acting regulation (transposition immunity) and trans-acting regulation (transposition repression) are analyzed. The potential selective advantage to regulation is assumed to be derived from the deleterious effects of mutations associated with the insertion of newly replicated elements. It is shown that both types of regulation can easily evolve in hosts with low rates of genetic recombination per generation, such as bacteria or bacterial plasmids. Conditions are much more restrictive in organisms with relatively free recombination. In haploids, the main selective force promoting regulation is the induction of lethal or sterile mutations by transposition; in diploids, a sufficiently high frequency of dominant lethal or sterile mutations associated with transpositions is required. Data from Drosophila and maize suggest that this requirement can sometimes be met. Coupling of regulatory effects across different families of elements would also aid the evolution of regulation. The selective advantages of restricting transposition to the germ line and of excising elements from somatic cells are discussed.  相似文献   

3.
Transposable elements (TEs) are a major source of genetic variability in genomes, creating genetic novelty and driving genome evolution. Analysis of sequenced genomes has revealed considerable diversity in TE families, copy number, and localization between different, closely related species. For instance, although the twin species Drosophila melanogaster and D. simulans share the same TE families, they display different amounts of TEs. Furthermore, previous analyses of wild type derived strains of D. simulans have revealed high polymorphism regarding TE copy number within this species. Several factors may influence the diversity and abundance of TEs in a genome, including molecular mechanisms such as epigenetic factors, which could be a source of variation in TE success. In this paper, we present the first analysis of the epigenetic status of four TE families (roo, tirant, 412 and F) in seven wild type strains of D. melanogaster and D. simulans. Our data shows intra- and inter-specific variations in the histone marks that adorn TE copies. Our results demonstrate that the chromatin state of common TEs varies among TE families, between closely related species and also between wild type strains.  相似文献   

4.
果蝇P转座因子的研究进展   总被引:2,自引:0,他引:2  
解生勇 《遗传》2000,22(6):437-440
果蝇P因子是DNA转座子,在近几十年里受到很大关注。可用于确认有关基因,克隆基因以及安置基因回到基因组。P因子的高易动性及其保持和对内部序列强烈的修饰作用也是P因子的本质特征。P因子的另一重要用途是用于产生转基因果蝇。目的基因置于质粒内P因子中可在转座酶的作用下插入前胚盘胚。携带目的基因的P因子可从质粒转座到任意染色体上。据报道,在典型实验中,插入可育果蝇的10%~20%可产生转化体后裔。但是以这种可动DNA片段作为载体尚存在转移基因的不稳定性及与内源跳跃基因的相互影响。本文介绍了果蝇P转座因子的一些研究进展。这些因子的遗传可动性也使它们适用于建造载体产生转基因生物。若如此,载体导入外源基因组的遗传稳定性问题将是一个重要课题。 Abstract:P elements in D.melanogaster are DNA transposons and received greater attention within the last few decades.P elements are used for identifying genes of interest,for cloning them,and for placing them back into the genome.The high mobility of P elements and their retention of this mobility and drastic modiffications to their internal sequences are also essential features.Another most important use of P elements is that of making transgenic flies.Desired gene is placed between P-element ends,usually within a plasmid,and injected into preblastoderm embryos in the presence of transposase.This P element then transposes from the plasmid to a random chromosomal site.Reported in a typical experiment,10%~20% of the fertile injected flies produce transformant progeny.But the instability of the transferred gene carried on a piece of mobile DNA as a vector and its interaction with endogenous jumping genes.This paper introduced the studies advances of P transposable element in Drosophila.The genetic mobility of these elements can also make them suitable for the construction of vectors to create transgenic organisms.If so,the genetic stability of the vectors introduced to a foreign genome should be a important subject.  相似文献   

5.
6.
果蝇转座因子对基因组进化的影响   总被引:2,自引:0,他引:2  
真核生物基因组织有很多可移动DNA片段为称转座因子,果蝇是大量系统研究的最好实验材料之一,其基因组的10%-12%是由转座因子组成,在宿主中,TEs也许改变基因表达模型,也许改变ORFs编码序列,也许对细胞功能产生影响,这此因子遗传的可动性也可能使它们适于建造载体产生转基因生物。因此,对TEs进化的动态研究以及对宿主基因组进化影响的探索将有助于TEs作为载体的细胞工程研究。  相似文献   

7.
F. M. Sheen  J. K. Lim    M. J. Simmons 《Genetics》1993,133(2):315-334
Eight independent recessive lethal mutations that occurred on derivatives of an unstable X chromosome (Uc) in Drosophila melanogaster were analyzed by a combination of genetic and molecular techniques. Seven of the mutations were localized to complementation groups in polytene chromosome bands 6E; 7A. In situ hybridization and genomic Southern analysis established that hobo transposable elements were associated with all seven of the mutations. Six mutations involved deletions of DNA, some of which were large enough to be seen cytologically, and in each case, a hobo element was inserted at the junction of the deletion's breakpoints. A seventh mutation was associated with a small inversion between 6F and 7A-B and a hobo element was inserted at one of its breakpoints. One of the mutant chromosomes had an active hobo-mediated instability, manifested by the recurrent production of mutations of the carmine (cm) locus in bands 6E5-6. This instability persisted for many generations in several sublines of an inbred stock. Two levels of instability, high and basal, were distinguished. Sublines with high instability had two hobo elements in the 6E-F region and produced cm mutations by deleting the segment between the two hobos; a single hobo element remained at the junction of the deletion breakpoints. Sublines with low instability had only one hobo element in the 6E-F region, but they also produced deletion mutations of cm. Both types of sublines also acquired hobo-mediated inversions on the X chromosome. Collectively, these results suggest that interactions between hobo elements are responsible for the instability of Uc. It is proposed that interactions between widely separated elements produce gross rearrangements that restructure the chromosome and that interactions between nearby elements cause regional instabilities manifested by the recurrence of specific mutations. These regional instabilities may arise when a copy of hobo transposes a short distance, creating a pair of hobos that can interact to produce small rearrangements.  相似文献   

8.
The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host–virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts’ genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.  相似文献   

9.
Transposable elements (TEs) are considered to be genomic parasites and their interactions with their hosts have been likened to the coevolution between host and other nongenomic, horizontally transferred pathogens. TE families, however, are vertically inherited as integral segments of the nuclear genome. This transmission strategy has been suggested to weaken the selective benefits of host alleles repressing the transposition of specific TE variants. On the other hand, the elevated rates of TE transposition and high incidences of deleterious mutations observed during the rare cases of horizontal transfers of TE families between species could create at least a transient process analogous to the influence of horizontally transmitted pathogens. Here, we formally address this analogy, using empirical and theoretical analysis to specify the mechanism of how host–TE interactions may drive the evolution of host genes. We found that host TE-interacting genes actually have more pervasive evidence of adaptive evolution than immunity genes that interact with nongenomic pathogens in Drosophila. Yet, both our theoretical modeling and empirical observations comparing Drosophila melanogaster populations before and after the horizontal transfer of P elements, which invaded D. melanogaster early last century, demonstrated that horizontally transferred TEs have only a limited influence on host TE-interacting genes. We propose that the more prevalent and constant interaction with multiple vertically transmitted TE families may instead be the main force driving the fast evolution of TE-interacting genes, which is fundamentally different from the gene-for-gene interaction of host–pathogen coevolution.  相似文献   

10.
Previously we described highly unstable mutations in the yellow locus, induced by the chimeric element and consisting of sequences from a distally located 1A unique genomic region, flanked by identical copies of an internally deleted 1.2-kb P element. Here we show that a sequence, which is part of the yellow 1A region, can be transmitted to the AS-C by successive inversion and reinversion generated by yellow- and AS-C-located P elements. The chimeric element contains a regulatory element from the 1A region that specifically blocks yellow wing and body enhancers and simultaneously stimulates yellow expression in bristles. These results suggest that P-element-generated chimeric elements may play a certain role in rapid changes of regulatory regions of genes during evolution.  相似文献   

11.
The Mu transposon of maize exists in a highly mutagenic strain called Robertson's Mutator. Plants of this strain contain 10-50 copies of the Mu element, whereas most maize strains and other plants have none. When Mutator plants are crossed to plants of the inbred line 1S2P, which does not have copies of Mu, the progeny plants have approximately the same number of Mu sequences as did their Mutator parent. Approximately one-half of these copies have segregated from their parent and one-half have arisen by transposition and are integrated into new positions in the genome. This maintenance of copy number can be accounted for by an extremely high rate of transposition of the Mu elements (10-15 transpositions per gamete per generation). When Mutator plants are self-pollinated, the progeny double their Mu copy number in the first generation, but maintain a constant number of Mu sequences with subsequent self-pollinations. Transposition of Mu and the events that lead to copy number maintenance occur very late in the development of the germ cells but before fertilization. A larger version of the Mu element transposes but is not necessary for transposition of the Mu sequences. The progeny of crosses with a Mutator plant occasionally lack Mutator activity; these strains retain copies of the Mu element, but these elements no longer transpose.  相似文献   

12.
13.
J. Tower  G. H. Karpen  N. Craig    A. C. Spradling 《Genetics》1993,133(2):347-359
Two different schemes were used to demonstrate that Drosophila P elements preferentially transpose into genomic regions close to their starting sites. A starting element with weak rosy(+) marker gene expression was mobilized from its location in the subtelomeric region of the 1,300-kb Dp1187 minichromosome. Among progeny lines with altered rosy(+) expression, a much higher than expected frequency contained new insertions on Dp1187. Terminal deficiencies were also recovered frequently. In a second screen, a rosy(+)-marked element causing a lethal mutation of the cactus gene was mobilized in male and female germlines, and viable revertant chromosomes were recovered that still contained a rosy(+) gene due to an intrachromosomal transposition. New transpositions recovered using both methods were mapped between 0 and 128 kb from the starting site. Our results suggested that some mechanism elevates the frequency 43-67-fold with which a P element inserts near its starting site. Local transposition is likely to be useful for enhancing the rate of insertional mutation within predetermined regions of the genome.  相似文献   

14.
K. Maruyama  K. D. Schoor    D. L. Hartl 《Genetics》1991,128(4):777-784
Six copies of the mariner element from the genomes of Drosophila mauritiana and Drosophila simulans were chosen at random for DNA sequencing and functional analysis and compared with the highly active element Mos1 and the inactive element peach. All elements were 1286 base pairs in length, but among them there were 18 nucleotide differences. As assayed in Drosophila melanogaster, three of the elements were apparently nonfunctional, two were marginally functional, and one had moderate activity that could be greatly increased depending on the position of the element in the genome. Both molecular (site-directed mutagenesis) and evolutionary (cladistic analysis) techniques were used to analyze the functional effects of nucleotide substitutions. The nucleotide sequence of the element is the primary determinant of function, though the activity level of elements is profoundly influenced by position effects. Cladistic analysis of the sequences has identified a T----A transversion at position 1203 (resulting in a Phe----Leu amino acid replacement in the putative transposase) as being primarily responsible for the low activity of the barely functional elements. Use of the sequences from the more distantly related species, Drosophila yakuba and Drosophila teissieri, as outside reference species, indicates that functional mariner elements are ancestral and argues against their origination by a novel mutation or by recombination among nonfunctional elements.  相似文献   

15.
We present here a molecular analysis of the region surrounding the structural gene encoding alcohol dehydrogenase (Adh) in 47 lines of Drosophila melanogaster that have each accumulated mutations for 300 generations. While these lines show a significant increase in variation of alcohol dehydrogenase enzyme activity compared to control lines, we found no restriction map variation in a 13-kb region including the complete Adh structural gene and roughly 5 kb of both 5' and 3' sequences. Thus, the rapid accumulation of ADH activity variation after 28,200 allele generations does not appear to have been due to the mobilization of transposable elements into or out of the Adh structural gene region.  相似文献   

16.
Investigating spatial patterns of loci under selection can give insight into how populations evolved in response to selective pressures and can provide monitoring tools for detecting the impact of environmental changes on populations. Drosophila is a particularly good model to study adaptation to environmental heterogeneity since it is a tropical species that originated in sub-Saharan Africa and has only recently colonized the rest of the world. There is strong evidence for the adaptive role of Transposable Elements (TEs) in the evolution of Drosophila, and TEs might play an important role specifically in adaptation to temperate climates. In this work, we analyzed the frequency of a set of putatively adaptive and putatively neutral TEs in populations with contrasting climates that were collected near the endpoints of two known latitudinal clines in Australia and North America. The contrasting results obtained for putatively adaptive and putatively neutral TEs and the consistency of the patterns between continents strongly suggest that putatively adaptive TEs are involved in adaptation to temperate climates. We integrated information on population behavior, possible environmental selective agents, and both molecular and functional information of the TEs and their nearby genes to infer the plausible phenotypic consequences of these insertions. We conclude that adaptation to temperate environments is widespread in Drosophila and that TEs play a significant role in this adaptation. It is remarkable that such a diverse set of TEs located next to a diverse set of genes are consistently adaptive to temperate climate-related factors. We argue that reverse population genomic analyses, as the one described in this work, are necessary to arrive at a comprehensive picture of adaptation.  相似文献   

17.
I. Mori  D. G. Moerman    R. H. Waterston 《Genetics》1988,120(2):397-407
The Tc1 transposable element family of the nematode Caenorhabditis elegans consists primarily of 1.6-kb size elements. This uniformity of size is in contrast to P in Drosophila and Ac/Ds in maize. Germline transposition and excision of Tc1 are detectable in the Bergerac (BO) strain, but not in the commonly used Bristol (N2) strain. A previous study suggested that multiple genetic components are responsible for the germline Tc1 activity of the BO strain. To analyze further this mutator activity, we derived hybrid strains between the BO strain and the N2 strain. One of the hybrid strains exhibits a single locus of mutator activity, designated mut-4, which maps to LGI. Two additional mutators, mut-5 II and mut-6 IV, arose spontaneously in mut-4 harboring strains. This spontaneous appearance of mutator activity at new sites suggests that the mutator itself transposes. The single mutator-harboring strains with low Tc1 copy number generated in this study should be useful in investigations of the molecular basis of mutator activity. As a first step toward this goal, we examined the Tc1 elements in these low copy number strains for elements consistently co-segregating with mutator activity. Three possible candidates were identified: none was larger than 1.6 kb.  相似文献   

18.
Transposable Element Distribution in Drosophila   总被引:3,自引:1,他引:2       下载免费PDF全文
C. Biemont  A. Tsitrone  C. Vieira    C. Hoogland 《Genetics》1997,147(4):1997-1999
  相似文献   

19.
Transposable Element Distributions in Drosophila   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

20.
The elements of the transposon families G, copia, mdg 1, 412, and gypsy that are located in the heterochromatin and on the Y chromosome have been identified by the Southern blotting technique in Drosophila simulans and D. melanogaster populations. Within species, the abundance of such elements differs between transposon families. Between species, the abundance in the heterochromatin and on the Y chromosome of the elements of the same family can differ greatly suggesting that differences within a species are unrelated to structural features of elements. By shedding some new light on the mechanism of accumulation of transposable elements in the heterochromatin, these data appear relevant to the understanding of the long-term interaction between transposable elements and the host genome. Received: 8 August 1997 / Accepted: 11 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号