首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王豫颖  王威浩 《植物学报》2022,57(5):673-683
随着高通量测序技术的持续发展和进步,开发出很多新颖的测序技术,为诸多悬而未决的生物学难题提供了解决方案。其中,核糖体图谱技术能够在全基因组水平和单核苷酸分辨率上监控细胞内的翻译事件,填补了转录组学和蛋白质组学研究之间的空隙。核糖体图谱技术不仅能够鉴定处于翻译状态的RNA分子,还能够精确定位RNA分子上正在翻译的核苷酸,进而准确描绘RNA分子上的开放阅读框。此外,结合转录组测序数据,核糖体图谱技术还可以确定每个转录本上的核糖体数量,从而计算每个转录本的翻译效率。目前,核糖体图谱技术已成功应用于动物、植物和微生物等研究领域,加深了人们对翻译调控机制的认识。然而,由于植物细胞和组织的特性,核糖体图谱技术在植物学研究中的应用仍然存在局限。该文综述了核糖体图谱技术的实验原理,以及在植物学研究中的相关进展。  相似文献   

2.
Five classes of erythromycin-resistant mutants of Chlamydomonas reinhardi have been identified. Each class corresponds to a different genetic locus, three nuclear and two chloroplast. The three nuclear loci appear to be unlinked, while Conde et al. (1975) have shown that the two chloroplast loci are linked, but not allelic. Mutants in each class have a unique pattern of cross-resistance in vivo to other antibiotics (lincomycin, carbomycin, and cleocin) that affect chloroplast protein synthesis. The chloroplast ribosomes from each class have a distinctive erythromycin-binding reaction in vitro.--Haploid and diploid strains containing combinations of different genes affecting the chloroplast ribosome were constructed to probe ribosome structure. New phenotypes were obtained by such combinations, demonstrating interactions between the gene products of a number of loci specifying ribosome components.  相似文献   

3.
The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.  相似文献   

4.
5.
The tadpole is a critical stage in the amphibian life cycle and plays an important role during the transition from the aquatic to the terrestrial stage.However,there is a large gap in tadpole research,which represents a vital component of our understanding of the diversity and complexity of the life history traits of amphibians,especially their developmental biology.Some aspects of this gap are due to limited research approaches.To date,X-ray microcomputed tomography(micro-CT)has been widely used to conduct osteology research in adult amphibians and reptiles,but little is known about whether this tool can be applied in tadpole studies.Thus,we compared the results of two methods(the bone-cartilage double-staining technique and micro-CT)to study vertebrae in tadpole specimens.The results revealed no significant difference between the two methods in determining the number of vertebrae,and micro-CT represents a rapid,non-invasive,reliable method of studying tadpole vertebrae.When scanning tadpoles,voltage is the most critical of the scanning parameters(voltage,current and scan time),and moderate scanning parameters are recommended.In addition,micro-CT performed better using specimens stored in 70% ethanol than those preserved in 10% formalin.Finally,we suggest that micro-CT should be more widely applied in herpetological research to increase specimen utilization.  相似文献   

6.
To study the participation of chloroplast protein synthesisduring the three phases [Matsuda (1974) Biochim. Biophys. Acta366:45] of the greening process in Chlamydomonas reinhardtiiy-1, the greening characteristics in the low-chloroplast ribosomemutant y-1 ac-20 were compared with those in the y-1. In thedouble mutant cells Chl synthesis proceeded with an extendedlag and without a second transition point. The development ofpotential for rapid Chl synthesis (P-factor formation) was alsodelayed. Furthermore, PS I activity increased significantly,whereas PS II activity developed very little during greeningof the double mutant cells. The results indicate that greeningin double mutant cells occurs with no apparent late phase. (Received November 26, 1984; Accepted February 25, 1985)  相似文献   

7.
We report here a simple and rapid method for the purification of chloroplast DNA (ctDNA) from wheat (Triticum aestivum). It utilizes an aqueous procedure, which does not involve at any stage running of gradients. Due to use of DEPC which inactivates DNases activated by EDTA, the DNase action on crude chloroplast preparation containing ctDNA is avoided.  相似文献   

8.
9.
10.
Human and animal alveolar echinococcosis (AE) are important helminth infections endemic in wide areas of the Northern hemisphere. Monitoring Echinococcus multilocularis viability and spread using real-time fluorescent imaging in vivo provides a fast method to evaluate the load of parasite. Here, we generated a kind of fluorescent protoscolices in vivo imaging model and utilized this model to assess the activity against E. multilocularis protoscolices of metformin (Met). Results indicated that JC-1 tagged E. multilocularis can be reliably and confidently used to monitor protoscolices in vitro and in vivo. The availability of this transient in vivo fluorescent imaging of E. multilocularis protoscolices constitutes an important step toward the long term bio-imaging research of the AE-infected mouse models. In addition, this will be of great interest for further research on infection strategies and development of drugs and vaccines against E. multilocularis and other cestodes.  相似文献   

11.
12.
Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX) to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics.  相似文献   

13.
Small proteins specifically refer to proteins consisting of less than 100 amino acids translated from small open reading frames (sORFs), which were usually missed in previous genome annotation. The significance of small proteins has been revealed in current years, along with the discovery of their diverse functions. However, systematic annotation of small proteins is still insufficient. SmProt was specially developed to provide valuable information on small proteins for scientific community. Here we present the update of SmProt, which emphasizes reliability of translated sORFs, genetic variants in translated sORFs, disease-specific sORF translation events or sequences, and remarkably increased data volume. More components such as non-ATG translation initiation, function, and new sources are also included. SmProt incorporated 638,958 unique small proteins curated from 3,165,229 primary records, which were computationally predicted from 419 ribosome profiling (Ribo-seq) datasets or collected from literature and other sources from 370 cell lines or tissues in 8 species (Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Danio rerio, Saccharomyces cerevisiae, Caenorhabditis elegans, and Escherichia coli). In addition, small protein families identified from human microbiomes were also collected. All datasets in SmProt are free to access, and available for browse, search, and bulk downloads at http://bigdata.ibp.ac.cn/SmProt/.  相似文献   

14.
Changes in morphology of chloroplast nuclei (cp-nuclei), totalcp-DNA content, number of cp-nuclei, oxygen-evolution activityand chlorophyll (a and b) content were examined during the degenerationand development of chloroplasts, using Chlamydomonas reinhardiicells which had been incubated on solid medium for various periods. Under 4'-6-diamidino-2-phenylindole (DAPI) epifluorescence microscopy,each cell that had been incubated for 7 days had one cell nucleus,one cup-shaped chloroplast and about 10 small, dispersed cp-nucleiin the chloroplast. One day after incubation of these cellson fresh medium, the cell volume and cp-nuclei increased insize 2-3 fold, but rapidly decreased in size after cell division.After about 7 days of incubation, cells ceased to divide andcp-nuclei began to associate with each other. At about 20 daysthey formed a ring-shaped structure surrounding the pyrenoid,followed by condensation into one cp-nuclear particle near thepyrenoid. When 41-day-old cells, having only one cp-nucleus,were reinoculated on fresh solid medium, the cp-nucleus increasedin size 2–3 fold, divided into several cp-nuclear particlesand then dispersed into the chloroplast, forming a bead-likestructure, before cell division. From microscopic fluorometry,a 4-fold increase in total cp-DNA content per chloroplast, withoutan increase in the number of cp-nuclear particles per chloroplast,occurred one day after the start of the experiment and one dayafter reinoculation of 41-day-old cells onto fresh medium. Theprocess of condensation of dispersed cp-nuclear particles intoone cp-nucleus during degeneration of the chloroplast was notaccompanied by any change in total cp-DNA content per chloroplast.A large peak of oxygen-evolution (0.6–0.9 pmoles/cell/hour)was seen one day after inoculation and reinoculation of thecells. The chlorophyll content (a+b) was high (1.2–2.2pg/cell) during the first week of incubation, after which itgradually decreased. (Received December 18, 1985; Accepted April 2, 1986)  相似文献   

15.
16.
Leaves of Brassica oleracea, Helianthus annuus, and Nicotiana rustica were exposed for 20 s to high concentrations of CO2. CO2 uptake by the leaf, which was very fast, was measured as a transient increase in the concentration of oxygen. Rapid solubilization of CO2 in excess of that which is physically dissolved in aqueous phases is proposed to be caused by bicarbonate formation in the stroma of chloroplasts, which contain carbonic anhydrase. On this basis, pH values and bicarbonate accumulation in the chloroplast stroma were calculated. Buffer capacities were far higher than expected on the basis of known concentrations in the chloroplast stroma. Moreover, apparent buffer capacities increased with the time of exposure to high CO2, and they were higher when the measurements were performed in the light than in the dark. During prolonged exposure of leaves to 16% CO2, calculated bicarbonate concentrations in the chloroplast stroma exceeded 90 mM in the dark and 120 mM in the light. The observations are interpreted as indicating that under acid stress protons are rapidly exported from the chloroplasts in exchange for cations, which are imported. The data are discussed in terms of effective metabolic pH control by ion transport, first across the chloroplast envelope and, then, across the tonoplast of leaf mesophyll cells. The direct involvement of the vacuole in the regulation of the chloroplast pH in leaf cells is suggested.  相似文献   

17.
Control of protein homeostasis is fundamental to the health and longevity of all organisms. Because the rate of protein synthesis by ribosomes is a central control point in this process, regulation, and maintenance of ribosome function could have amplified importance in the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of protein homeostasis, aging, and disease (1, 2, 3, 4), whereas improved protein homeostasis, implying optimal ribosomal function, is associated with disease resistance and increased lifespan (5, 6, 7). To maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are targeted for autophagic degradation. It is not known if complete degradation is the only mechanism for eukaryotic ribosome maintenance or if they might also be repaired by replacement of defective components. We used stable-isotope feeding and protein mass spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole ribosome degradation both contribute to ribosome maintenance in vivo. In general, peripheral r-proteins and those with more direct roles in peptide-bond formation are replaced multiple times during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. Dietary signals impact the rates of both new ribosome assembly and component exchange. Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link in the frequently observed associations among diminished rates of protein synthesis, increased autophagy, and greater longevity (5, 6, 8, 9).  相似文献   

18.
19.
Incorporation of 14C-amino acids into proteins in radish cotyledonswas suppressed by 4-thiouridine (4SU) culture. The inhibitoryeffect of 4SU was similar to that of chloramphenicol. 4SU culturedid not reduce the content of ferredoxin (Fd) and the labelinginto Fd significantly, but it did decrease the content and thesynthesis of ribulose bisphosphate carboxylase (RuBPCase). Thesynthesis of thylakoid chlorophyll-proteins I and II also wasinhibited by 4SU culture. In 4SU-cultured seedlings, the ratioof labeling into the large and small subunits of RuBPCase andthat into the two chlorophyll-proteins were the same as thosein the controls grown without 4SU. (Received September 29, 1980; Accepted January 27, 1981)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号