首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pH effect of pyrrole electropolymerization in the presence of glucose oxidase (GODx) on the performance and characteristic of galvanostatically fabricated glucose oxidase/polypyrrole (Ppy) biosensor is reported. Preparing the GODx/Ppy biosensors in 0.1 M KCl saline solution with various pH containing 0.05 M pyrrole monomer and 0.5 mg/ml GODx at 382 microA/cm2 current density for 100 mC/cm2 film thickness, both the galvanostatic responses and characteristics of these resulted biosensors were obtained. The results revealed that the galvanostatic glucose biosensor fabricated at neutral pH condition exhibited much higher sensitivity than those fabricated at lower or higher pH conditions, and had a good linearity form zero to 10 mM glucose with the sensitivity of 7 nA/mM. Finally, the long-term stability and the kinetic parameters, Michaelis constant and maximum current, of this biosensor were also reported.  相似文献   

2.
An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant (KMapp) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable.  相似文献   

3.
Screen-printed amperometric glucose biosensors have been fabricated using a water-based carbon ink. The enzyme glucose oxidase (GOD) and the electro-catalyst cobalt phthalocyanine were mixed with the carbon ink prior to the screen-printing process; therefore, biosensors are prepared in a one-step fabrication procedure. Optimisation of the biosensor performance was achieved by studying the effects of pH, buffer strength, and applied potential on the analytical response. Calibration studies were performed under optimum conditions, using amperometry in stirred solution, with an operating potential of +500 mV versus SCE. The sensitivity was found to be 1170 nA mM(-1), with a linear range of 0.025-2 mM; the former represents the detection limit. The disposable amperometric biosensor was evaluated by carrying out replicate determinations on a sample of bovine serum. This was achieved by the method of multiple standard additions and included a correction for background currents arising from oxidizable serum components. The mean serum concentration was calculated to be 8.63 mM and compared well with the supplier's value of 8.3 mM; the coefficient of variation was calculated to be 3.3% (n=6).  相似文献   

4.
Graphene (GR) was covalently functionalized with chitosan (CS) to improve its biocompatibility and hydrophilicity for the preparation of biosensors. The CS-grafted GR (CS-GR) rendered water-soluble nanocomposites that were readily decorated with palladium nanoparticles (PdNPs) using in situ reduction. Results with TEM, SEM, FTIR, Raman and XRD revealed that CS was successfully grafted without destroying the structure of GR, and PdNPs were densely decorated on CS-GR sheets with no aggregation occurring. A novel glucose biosensor was then developed through covalently immobilizing glucose oxidase (GOD) on a glassy carbon electrode modified with the PdNPs/CS-GR nanocomposite film. Due to synergistic effect of PdNPs and GR, the PdNPs/CS-GR nanocomposite film exhibited excellent electrocatalytical activity toward H(2)O(2) and facilitated high loading of enzymes. The biosensor demonstrated high sensitivity of 31.2 μA mM(-1)cm(-2) for glucose with a wide linear range from 1.0 μM to 1.0mM as well as a low detection limit of 0.2 μM (S/N=3). The low Michaelis-Menten constant (1.2mM) suggested enhanced enzyme affinity to glucose. These results indicated that PdNPs/CS-GR nanocomposites held great potential for construction of a variety of electrochemical biosensors.  相似文献   

5.
The glucose oxidase (GOx) enzyme was immobilized on chitosan-based porous composite membranes using a covalent bond between GOx and the chitosan membrane. The chitosan-based porous membranes were prepared by the combination of the evaporation- and non-solvent-induced phase separation methods. To increase the membrane conductivity, carbon nanotubes (CNTs) were added to the chitosan solution. The resulting membranes were characterized in terms of water permeability, surface morphology and surface chemistry. Enzyme immobilization was performed on the chitosan membranes with and without activation using glutaraldehyde (GA). Three different configurations of working electrodes were evaluated to investigate the potential use of the modified membranes in biosensors. The results show that enzyme immobilization capacity was greater for membranes that had been activated than for membranes that had not been activated. In addition, activation increased the stability of the enzyme immobilization. The immobilization of GOx on chitosan-based membranes was influenced by both pH and the concentration of the enzyme solution. The presence of CNTs significantly increased the electrical conductivity of the chitosan membranes. The evaluation of three different configurations of working electrodes suggested that the third configuration, which was composed of an electrode-mediator-(chitosan and carbon nanotube) structure and enzyme, is the best candidate for biosensor applications.  相似文献   

6.
Microband glucose biosensors were produced by insulating and sectioning through a screen-printed, water-based carbon electrode containing cobalt phthalocyanine redox mediator and glucose oxidase enzyme. Under quiescent conditions at 37 °C, at an operating potential of +0.4 V, they produced an amperometric response to glucose in buffer solutions with a sensitivity of 26.4 nA/mM and a linear range of 0.45 to 9.0 mM. An optimal pH value of 8.5 was obtained under these conditions, and a value for activation energy of 40.55 kJ mol−1 was calculated. In culture medium (pH 7.3), a sensitivity of 13 nA/mM was obtained and the response was linear up to 5 mM with a detection limit of 0.5 mM. The working concentration was up to 20 mM glucose with a precision of 11.3% for replicate biosensors (n = 4). The microband biosensors were applied to determine end-point glucose concentrations in culture medium by monitoring steady-state current responses 400 s after transfer of the biosensors into different sample solutions. In conjunction with cultures of HepG2 (human Caucasian hepatocyte carcinoma) cells, current responses obtained in 24-h supernatants showed an inverse correlation (R2 = 0.98) with cell number, indicating that the biosensors were applicable for monitoring glucose metabolism by cells and of quantifying cell number. Glucose concentrations determined using the biosensor assay were in good agreement, for concentrations up to 20 mM, with those determined spectrophotometrically (R2 = 0.99). This method of end-point glucose determination was used to provide an estimated rate of glucose uptake for HepG2 cells of 7.9 nmol/(106 cells min) based on a 24-h period in culture.  相似文献   

7.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a sol-gel composite at the surface of a basal plane pyrolytic graphite (bppg) electrode modified with multiwall carbon nanotube. First, the bppg electrode is subjected to abrasive immobilization of carbon nanotubes by gently rubbing the electrode surface on a filter paper supporting the carbon nanotubes. Second, the electrode surface is covered with a thin film of a sol-gel composite containing encapsulated glucose oxidase. The carbon nanotubes offer excellent electrocatalytic activity toward reduction and oxidation of hydrogen peroxide liberated in the enzymatic reaction between glucose oxidase and glucose, enabling sensitive determination of glucose. The amperometric detection of glucose is carried out at 0.3 V (vs saturated calomel electrode) in 0.05 M phosphate buffer solution (pH 7.4) with linear response range of 0.2-20 mM glucose, sensitivity of 196 nA/mM, and detection limit of 50 microM (S/N=3). The response time of the electrode is < 5s when it is stored dried at 4 degrees C, the sensor showed almost no change in the analytical performance after operation for 3 weeks. The present carbon nanotube sol-gel biocomposite glucose oxidase sensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and rapid response and in comparison to bulk modified composite biosensors the amounts of enzyme and carbon nanotube needed for electrode fabrication are dramatically decreased.  相似文献   

8.
Microband glucose biosensors were fabricated by screen-printing a water-based carbon ink formulation containing cobalt phthalocyanine redox mediator and glucose oxidase (GOD) enzyme, then insulating and sectioning through the thick (20mum) film to expose a 3mm-long working electrode edge. The performance of these biosensors for glucose analysis was investigated at 25 degrees C. Voltammetry in glucose-containing buffer solutions established that an operating potential of +0.4V vs. Ag/AgCl was suitable for analysis under both stirring and quiescent conditions. The influence of pH on biosensor performance was established and an operational pH of 8.0 was selected. Steady-state responses were obtained under quiescent conditions, suggesting a mixed mechanism predominated by radial diffusion, indicative of microelectrode behaviour. Calibration studies obtained with these biosensors showed steady-state currents that were linearly dependent on glucose concentration from the limit of detection (0.27mM) up to 2.0mM, with a precision for replicate biosensors of 6.2-10.7%. When applied to the determination of glucose in human serum, the concentration compared favourably to that determined by a spectroscopic method. These results have demonstrated a simple means of fabricating biosensors for glucose measurement and determination in situations where low-current real-time monitoring under quiescent conditions would be desirable.  相似文献   

9.
Here we report on a novel platform based on buckypaper for the design of high-performance electrochemical biosensors. Using glucose oxidase as a model enzyme, we constructed a biocompatible mediator-free biosensor and studied the potential effect of the buckypaper on the stability of the biosensor with both amperometry and FTIR spectroscopy. The results showed that the biosensor responses sensitively and selectively to glucose with a considerable functional lifetime of over 80 days. The fabricated enzymatic sensor detects glucose with a dynamic linear range of over 9 mM and a detection limit of 0.01 mM. To examine the efficiency of enzyme immobilization, the Michaelis–Menten constant was calculated to be 4.67 mM. In addition, the fabricated electrochemical biosensor shows high selectivity; no amperometric response to the common interference species such as ascorbic acid, uric acid and acetamidophenol was observed. The facile and robust buckypaper-based platform proposed in this study opens the door for the design of high-performance electrochemical biosensors for medical diagnostics and environmental monitoring.  相似文献   

10.
Glucose oxidase (GOD) was genetically modified by adding a poly-lysine chain at the C-terminal with a peptide linker inserted between the enzyme and poly-lysine chain. The poly-lysine chain was added in order to anchor more electron transfer mediator, ferrocenecarboxylic acid, to GOD for the purpose of improving sensitivity and stability of glucose biosensors. The modified GOD had similar K(m) and K(cat) to those of the wild type enzyme. After interacted with the electron transfer mediator, the modified enzyme retained 90.01% of its native activity, while the commercial GOD and the wild type GOD (Aspergillus niger) retained only 22.43 and 22.17%, respectively. Screen-printed electrodes coated with the modified GOD, wild type yeast-derived GOD or the commercial GOD were tested in glucose solution of different concentrations. Experimental results showed that the biosensor based on the modified GOD gave the largest signal among the three. In addition, the linear range of the biosensor prepared by the modified GOD could extend to 45 mM, while they were about 20 mM for the biosensors based on the wild type yeast-derived enzyme and the commercial enzyme.  相似文献   

11.
Arrays of nanoscopic gold tubes were prepared by electroless deposition of the metal within the pores of polycarbonate particle track-etched membranes (PTM). Glucose oxidase (Gox) was immobilised onto preformed self-assembled monolayers (SAMs) (mercaptoethylamine or mercaptopropionic acid) on electroless gold via cross-linking with glutaraldehyde or covalent attachment by carbodiimide coupling. The effectiveness of the different steps in the Gox immobilisation procedure was assessed by contact angle measurements, cyclic voltammetry and X-ray photoelectron spectroscopy. The enzyme loading was estimated by radioactivity measurements. The sensitivity to beta-glucose of these different biosensors has been evaluated. Glucose responses as large as 400 nA mM(-1) cm(-2) have been obtained. To our knowledge, this sensitivity value is amongst the highest values reported in the literature for comparable biosensor systems.  相似文献   

12.
An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed.  相似文献   

13.
An electrochemical biosensor for cow's milk progesterone has been developed and used in a competitive immunoassay under thin-layer, continuous-flow conditions. Single-use biosensors were fabricated by depositing anti-progesterone monoclonal antibody (mAb) onto screen-printed carbon electrodes (SPCEs). Three operational steps could be identified: (1) Competitive binding of sample/conjugate (alkaline-phosphatase-labelled progesterone, AP-prog) mixture, (2) establishment of a steady-state amperometric baseline current and (3), measurement of an amperometric signal in the presence of enzyme substrate (1-naphthyl phosphate, 1-NP). In the thin-layer cell, the enzyme product, 1-naphthol, showed electrochemical behaviour consistent with bulk conditions and gave a linear amperometric response under continuous-flow conditions (Eapp=+0.3 V vs. Ag/AgCl) over the range 0.1–1.0 μg/ml. After pre-incubating biosensors with progesterone standards, signal generation within the cell (substrate CONCENTRATION=5 mM) was recorded amperometrically as rate (nA/s) or maximum current (imax, nA). Response values for milk standards were approximately 50% of those prepared in buffer. In both cases, calibration plots over the range 0–50 ng/ml progesterone were obtained. By conducting sample binding under flowing conditions, only 7% of the previous response was obtained, even at a substrate concentration of 50 mM, resulting in low signal:noise ratio. Using a stop-flow arrangement (i.e. quiescent sample binding, followed by continuous flow), low-noise amperograms were obtained at [1-NP]=5 mM. Calibration plots were obtained over the range 0–25 ng/ml, with a coefficient of variation of 12.5% for five replicate real milk samples.  相似文献   

14.
Glucose oxidase (EC 1.3.4.3) was immobilized on chitosan membrane (<0.1 mm in thickness) prepared from the carapace of the soldier crab Mictyris brevidactylus. A glucose electrode was constructed by covering a platinum electrode (2.0 mm in diameter) with the enzyme membrane. The enzyme electrode sensed glucose amperometrically (1.0 µA/mM, with linear range up to 0.5 mM, r = 0.999) when positively imposed with 0.6 V against an Ag/AgCl reference electrode. The glucose biosensor was sensitive (<0.1 µM, S/N > 3), reproducible (CV for 55 µM glucose <3%, n = 5), reagentless, and durable for months.  相似文献   

15.
A new strategy for fabricating glucose biosensor was presented by layer-by-layer assembled chitosan (CS)/gold nanoparticles (GNp)/glucose oxidase (GOD) multilayer films modified Pt electrode. First, a cleaned Pt electrode was immersed in poly(allylamine) (PAA), and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/PAA/Pt). Second, the GOD/GNp/PAA/Pt electrode was immersed in CS, and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/CS/GOD/GNp/PAA/Pt). Third, different layers of multilayer films modified Pt electrodes were assembled by repeating the second process. Film assembling and characterization were studied by quart crystal microbalance, and properties of the resulting glucose biosensors were measured by electrochemical measurements. The results confirmed that the assembling process of multilayer films was simple to operate, the immobilized GOD displayed an excellent catalytic property to glucose, and GNp in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. The amperometric response of the biosensors uniformly increased from one to six layers of multilayer films, and then reached saturation after the seven layers. Among the resulting biosensors, the biosensor based on the six layers of multilayer films was best. It showed a wide linear range of 0.5-16 mM, with a detection limit of 7.0 microM estimated at a signal-to-noise ratio of 3, fast response time (within 8s). Moreover, it exhibited good reproducibility, long-term stability and interference free. This method can be used for constructing other thin films, which is a universal immobilization method for biosensor fabrication.  相似文献   

16.
ZnO:Co nanoclusters were synthesized by nanocluster-beam deposition with averaged particle size of 5 nm and porous structure, which were for the first time adopted to construct a novel amperometric glucose biosensor. Glucose oxidase was immobilized into the ZnO:Co nanocluster-assembled thin film through Nafion-assisted cross-linking technique. Due to the high specific active sites and high electrocatalytic activity of the ZnO:Co nanoclusters, the constructed glucose biosensor showed a high sensitivity of 13.3 microA/mA cm2. The low detection limit was estimated to be 20 microM (S/N=3) and the apparent Michaelis-Menten constant was found to be 21 mM, indicating the high affinity of the enzyme on ZnO:Co nanoclusters to glucose. The results show that the ZnO:Co nanocluster-assembled thin films with nanoporous structure and nanocrystallites have potential applications as platforms to immobilize enzyme in biosensors.  相似文献   

17.
Microband biosensors, screen-printed from a water-based carbon ink containing cobalt phthalocyanine redox mediator and glucose oxidase (GOD) enzyme, were used to monitor glucose levels continuously in buffer and culture medium. Five biosensors were operated amperometrically (E(app) of +0.4V), in a 12-well tissue culture plate system at 37°C, using a multipotentiostat. After 24 h, a linear calibration plot was obtained from steady-state current responses for glucose concentrations up to 10 mM (dynamic range 30 mM). Within the linear region, a correlation coefficient (R(2)) of 0.981 was obtained between biosensor and spectrophotometric assays. Over 24 h, an estimated 0.15% (89 nmol) of the starting glucose concentration (24 mM) was consumed by the microbiosensor. The sensitivity of the biosensor response in full culture medium was stable between pHs 7.3 and 8.4. Amperometric responses for HepG2 monolayer cultures decreased with time in inverse proportionality to cell number (for 0 to 10(6) cell/ml), as glucose was being metabolised. HepG2 3D cultures (spheroids) were also shown to metabolise glucose, at a rate which was independent of spheroid age (between 6 and 15 days). Spheroids were used to assay the effect of a typical hepatotoxin, paracetamol. At 1 mM paracetamol, glucose uptake was inhibited by 95% after 6 h in culture; at 500 μM, around 15% inhibition was observed after 16 h. This microband biosensor culture system could form the basis for an in vitro toxicity testing system.  相似文献   

18.
A new matrix for enzyme immobilization of urease was obtained by incorporating rhodium nanoparticles (5% on activated charcoal) and chemical bonding of chitosan with different concentration (0.15%; 0.3%; 0.5%; 1.0%; 1.5%) in previously chemically modified AN copolymer membrane. The basic characteristics of the chitosan modified membranes were investigated. The SEM analyses were shown essential morphology change in the different modified membranes. Both the amount of bound protein and relative activity of immobilized enzyme were measured. A higher activity (about 77.44%) was measured for urease bound to AN copolymer membrane coated with 1.0% chitosan and containing rhodium nanoparticles. The basic characteristics (pH(opt), T(opt), thermal, storage and operation stability) of immobilized enzyme on this optimized modified membrane were also determined. The prepared enzyme membrane was used for the construction of amperometric biosensor for urea detection. Its basic amperometric characteristics were investigated. A calibration plot was obtained for urea concentration ranging from 1.6 to 23 mM. A linear interval was detected along the calibration curve from 1.6 to 8.2mM. The sensitivity of the constructed biosensor was calculated to be 3.1927 μAmM(-1)cm(-2). The correlation coefficient for this concentration range was 0.998. The detection limit with regard to urea was calculated to be 0.5mM at a signal-to-noise ratio of 3. The biosensor was employed for 10 days while the maximum response to urea retained 86.8%.  相似文献   

19.
A bifunctional fusion enzyme system constructed by gene splicing is proposed as a new model to develop sequence biosensors, taking maltose biosensor as an example. The cDNA fragment of Aspergillus niger glucoamylase (E.C 3.2.1.3, GA) was fused to the 3' end of Aspergillus niger glucose oxidase (E.C 1.1.3.4, GOD) gene with the insertion of a flexible linker peptide [-(Ser-Gly)5-] coding sequence. The fusion gene was cloned into the vector pPIC9 and expressed in Pichia pastoris GS115 under the control of the AOX1 promoter. It was found that a bifunctional hybrid protein with a molecular weight of 430 kDa was secreted after induction with methanol. The fusion enzyme GOD-(Ser-Gly)5-GA (GLG) was purified using Q Sepharose Fast Flow ion-exchange chromatography. Kinetic analysis demonstrated that GLG retained the typical kinetic properties of both GA and GOD. After being immobilized on an aminosilanized glass slide through covalent bonding by glutaraldehyde, GLG showed much higher sequential catalytic efficiency than the mixture of separately expressed GA and GOD (GA/GOD). Maltose biosensors were fabricated with GLG and GA/GOD, respectively. The performance characteristics of the maltose biosensor with respect to reproducibility, signal level, and linearity were effectively improved by using the fusion enzyme. Our findings offer a basis for the development of other sequence biosensors.  相似文献   

20.
Three amperometric biosensors based on immobilization of tyrosinase on a new Sonogel-Carbon electrode for detection of phenols and polyphenols are described. The electrode was prepared using high energy ultrasounds (HEU) directly applied to the precursors. The first biosensor was obtained by simple adsorption of the enzyme on the Sonogel-Carbon electrode. The second and the third ones, presenting sandwich configurations, were initially prepared by adsorption of the enzyme and then modification by mean of polymeric membrane such as polyethylene glycol for the second one, and the ion-exchanger Nafion in the case of the third biosensor. The optimal enzyme loading and polymer concentration, in the second layer, were found to be 285 U and 0.5%, respectively. All biosensors showed optimal activity at the following conditions: pH 7, -200 mV, and 0.02 mol l(-1) phosphate buffer. The response of the biosensors toward five simple phenols derivatives and two polyphenols were investigated. It was found that the three developed tyrosinase Sonogel-Carbon based biosensors are in satisfactory competitiveness for phenolic compounds determination with other tyrosinase based biosensors reported in the literature. The detection limit, sensitivity, and the apparent Michaelis-Menten constant K(m)(app) for the Nafion modified biosensor were, respectively, 0.064, 0.096, and 0.03 micromol, 82.5, 63.4, and 194 nA micromol(-1)l(-1), and 67.1, 54.6, and 12.1 micromol l(-1) for catechol, phenol, and 4-chloro-3-methylphenol. Hill coefficient values (around 1 for all cases), demonstrated that the immobilization method does not affect the nature of the enzyme and confirms the biocompatibility of the Sonogel-Carbon with the bioprobe. An exploratory application to real samples such as beers, river waters and tannery wastewaters showed the ability of the developed Nafion/tyrosinase/Sonogel-Carbon biosensor to retain its stable and reproducible response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号