首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selective loss of dopaminergic neurons in the substantia nigra pars compacta is a feature of Parkinson’s disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity is the most common experimental model used to investigate the pathogenesis of PD. Administration of MPTP in mice produces neuropathological defects as observed in PD and 1-methyl-4-pyridinium (MPP+) induces cell death when neuronal cell cultures are used. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis. In the present study, we demonstrated that AMPK is activated by MPTP in mice and MPP+ in SH-SY5Y cells. The inhibition of AMPK by compound C resulted in an increase in MPP+-induced cell death. We further showed that overexpression of AMPK increased cell viability after exposure to MPP+ in SH-SY5Y cells. Based on these results, we suggest that activation of AMPK might prevent neuronal cell death and play a role as a survival factor in PD.  相似文献   

2.
3.
Parkinson’s disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium (MPP+) induced SH-SY5Y neuronal cell death and in a 1-methyl-4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD animal model. PEP-1-Catalase transduced into SH-SY5Y cells significantly protecting them against MPP+-induced death by decreasing ROS and regulating cellular survival signals including Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis showed that transduced PEP-1-Catalase markedly protected against neuronal cell death in the SN in the PD animal model. Our results indicate that PEP-1-Catalase may have potential as a therapeutic agent for PD and other oxidative stress related diseases. [BMB Reports 2015; 48(7): 395-400]  相似文献   

4.
5.
Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson’s disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium (MPP+) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by MPP+ in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.  相似文献   

6.
Parkinson’s disease (PD) is primarily caused by severe degeneration and loss of dopamine neurons in the substantia nigra pars compacta. Thus, preventing the death of dopaminergic neurons is thought to be a potential strategy to interfere with the development of PD. In the present work, we studied the effect of insulin-like growth factor-1 (IGF-1) on 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in human neuroblastoma SH-EP1 cells. We found that the PI3K/AKT pathway plays a central role in IGF-mediated cell survival against MPP+ neurotoxicity. Furthermore, we demonstrated that the protective effect of AKT is largely dependent on the inactivation of GSK-3β, since inhibition of GSK-3β by its inhibitor, BIO, could mimic the protective effect of IGF-1 on MPP+-induced cell death in SH-EP1 cells. Interestingly, the IGF-1 potentiated PI3K/AKT activity is found to negatively regulate the JNK related apoptotic pathway and this negative regulation is further shown to be mediated by AKT-dependent GSK-3β inactivation. Thus, our results demonstrated that IGF-1 protects SH-EP1 cells from MPP+-induced apoptotic cell death via PI3K/AKT/GSK-3β pathway, which in turn inhibits MPP+-induced JNK activation.  相似文献   

7.
This study investigated the effect of naringin, a major flavonoid in grapefruit and citrus fruits, on the degeneration of the nigrostriatal dopaminergic (DA) projection in a neurotoxin model of Parkinson's disease (PD) in vivo and the potential underlying mechanisms focusing on the induction of glia-derived neurotrophic factor (GDNF), well known as an important neurotrophic factor involved in the survival of adult DA neurons. 1-Methyl-4-phenylpyridinium (MPP+) was unilaterally injected into the medial forebrain bundle of rat brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. To ascertain whether naringin-induced GDNF contributes to neuroprotection, we further investigated the effects of intranigral injection of neutralizing antibodies against GDNF in the MPP+ rat model of PD. Our observations demonstrate that naringin could increase the level of GDNF in DA neurons, contributing to neuroprotection in the MPP+ rat model of PD, with activation of mammalian target of rapamycin complex 1. Moreover, naringin could attenuate the level of tumor necrosis factor-α in microglia increased by MPP+-induced neurotoxicity in the substantia nigra. These results indicate that naringin could impart to DA neurons the important ability to produce GDNF as a therapeutic agent against PD with anti-inflammatory effects, suggesting that naringin is a beneficial natural product for the prevention of DA degeneration in the adult brain.  相似文献   

8.
Parkinson disease (PD) is a multifactorial disease resulting in preferential death of the dopaminergic neurons in the substantia nigra. Studies of PD-linked genes and toxin-induced models of PD have implicated mitochondrial dysfunction, oxidative stress, and the misfolding and aggregation of α-synuclein (α-syn) as key factors in disease initiation and progression. Many of these features of PD may be modeled in cells or animal models using the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Reducing oxidative stress and nitric oxide synthase (NOS) activity has been shown to be protective in cell or animal models of MPP+ toxicity. We have previously demonstrated that siRNA-mediated knockdown of α-syn lowers the activity of both dopamine transporter and NOS activity and protects dopaminergic neuron-like cells from MPP+ toxicity. Here, we demonstrate that α-syn knockdown and modulators of oxidative stress/NOS activation protect cells from MPP+-induced toxicity via postmitochondrial mechanisms rather than by a rescue of the decrease in mitochondrial oxidative phosphorylation caused by MPP+ exposure. We demonstrate that MPP+ significantly decreases the synthesis of the antioxidant and obligate cofactor of NOS and TH tetrahydrobiopterin (BH4) through decreased cellular GTP/ATP levels. Furthermore, we demonstrate that RNAi knockdown of α-syn results in a nearly twofold increase in GTP cyclohydrolase I activity and a concomitant increase in basal BH4 levels. Together, these results demonstrate that both mitochondrial activity and α-syn play roles in modulating cellular BH4 levels.  相似文献   

9.
The mechanisms leading to dopaminergic neuronal loss in the substantia nigra of patients with Parkinson disease (PD) remain poorly understood. We recently reported that aberrant DNA replication mediated by DNA polymerase-β (DNA pol-β) plays a causal role in the death of postmitotic neurons in an in vitro model of PD. In the present study, we show that both proliferating cell nuclear antigen (PCNA) and DNA pol-β are required for MPP+-induced neuronal death. PCNA binds to the catalytic domain of DNA pol-β in MPP+-treated neurons and in post-mortem brain tissues of PD patients. The PCNA-DNA pol-β complex is loaded into DNA replication forks and mediates DNA replication in postmitotic neurons. The aberrant DNA replication mediated by the PCNA-DNA pol-β complex induces p53-dependent neuronal cell death. Our results indicate that the interaction of PCNA and DNA pol-β contributes to neuronal death in PD.  相似文献   

10.
Niu  Jianyi  Xiong  Jing  Hu  Dan  Zeng  Fei  Nie  Shuke  Mao  Shanping  Wang  Tao  Zhang  Zhentao  Zhang  Zhaohui 《Neurochemical research》2017,42(10):2996-3004

DNA polymerase-β (DNA pol-β) plays a crucial role in the pathogenesis of Parkinson’s disease (PD). The aim of this study was to investigate the neuroprotective effects of a DNA polymerase-β inhibitor 2′,3′-dideoxycytidine (DDC) in PD models. In the in vitro studies, primary cultured neurons were challenged with 1-methyl-4-phenylpyridinium ion (MPP+). The expression of DNA pol-β was assessed using western blot. The neuroprotective effect of DNA pol-β knockdown and DNA pol-β inhibitor DDC was determined using cell viability assay and caspase-3 activity assay. We found that MPP+ induced neuronal death and the activation of caspase-3 in a dose-dependent manner. The expression of DNA pol-β increased after the neurons were exposed to MPP+. DNA pol-β siRNA or DNA pol-β inhibitor DDC attenuated neuronal death induced by MPP+. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, MPTP treatment triggered behavioral deficits and nigrostriatal lesions. Pretreatment with DDC attenuated MPTP-induced behavioral deficits, dopaminergic neuronal death and striatal dopamine depletion in the MPTP mouse model. These results indicate that DNA pol-β inhibitors may present a novel promising therapeutic option for the neuroprotective treatment of PD.

  相似文献   

11.
12.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and its pathogenesis is under intense investigation. Substantial evidence indicates that mitochondrial dysfunction and oxidative stress play central roles in the pathophysiology of PD, through activation of mitochondria-dependent apoptotic molecular pathways. Several mitochondrial internal regulating factors act to maintain mitochondrial function. However, the mechanism by which these internal regulating factors contribute to mitochondrial dysfunction in PD remains elusive. One of these factors, mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2), has been implicated in the regulation of mitochondrial redox balance and reduction of oxidative stress-induced cell injury. Here we report that IDH2 regulates mitochondrial dysfunction and cell death in MPP+/MPTP-induced DA neuronal cells, and in a mouse model of PD. Down-regulation of IDH2 increased DA neuron sensitivity to MPP+; lowered IDH2 levels facilitated induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Deficient IDH2 also promoted loss of DA SNpc neurons in an MPTP mouse model of PD. Interestingly, Mito-TEMPO, a mitochondrial ROS-specific scavenger, protected degeneration of SNpc DA neurons in the MPTP model of PD. These findings demonstrate that IDH2 contributes to degeneration of the DA neuron in the neurotoxin model of PD and establish IDH2 as a molecular target of potential therapeutic significance for this disabling neurological illness.  相似文献   

13.
《Free radical research》2013,47(9):1069-1080
Abstract

Disruption of neuronal iron homeostasis and oxidative stress are closely related to the pathogenesis of Parkinson's disease (PD). Ginkgetin, a natural biflavonoid isolated from leaves of Ginkgo biloba L, has many known effects, including anti-inflammatory, anti-influenza virus, and anti-fungal activities, but its underlying mechanism of the neuroprotective effects in PD remains unclear. The present study utilized PD models induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to explore the neuroprotective ability of ginkgetin in vivo and in vitro. Our results showed that ginkgetin could provide significant protection from MPP+-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and maintaining mitochondrial membrane potential. Meanwhile, ginkgetin dramatically inhibited cell apoptosis induced by MPP+ through the caspase-3 and Bcl2/Bax pathway. Moreover, ginkgetin significantly improved sensorimotor coordination in a mouse PD model induced by MPTP by dramatically inhibiting the decrease of tyrosine hydroxylase expression in the substantia nigra and superoxide dismutase activity in the striatum. Interestingly, ginkgetin could strongly chelate ferrous ion and thereby inhibit the increase of the intracellular labile iron pool through downregulating L-ferritin and upregulating transferrin receptor 1. These results indicate that the neuroprotective mechanism of ginkgetin against neurological injury induced by MPTP occurs via regulating iron homeostasis. Therefore, ginkgetin may provide neuroprotective therapy for PD and iron metabolism disorder related diseases.  相似文献   

14.
《BBA》2020,1861(3):148157
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by the death of dopamine neurons of Substantia nigra pars compacta (SNpc) leading to motor deficits. Amongst the mechanisms proposed, mitochondrial dysfunction, reduced complex-I and PGC1α levels were found to correlate with the pathology of PD. As embelin is a natural product with structural resemblance to ubiquinone, exhibits mitochondrial uncoupling and antioxidant effects, in the present study, we sought to examine its role in the mechanisms mediating PD. Results indicate that embelin protects from MPP+-induced oxidative stress and apoptosis in a time and dose-dependent manner in N27 dopaminergic cells. Cells treated with embelin exhibited increased levels of pAMPK, SIRT1 and PGC1α leading to enhanced mitochondrial biogenesis. Though treatment of cells with MPP+ also increased pAMPK levels, but, SIRT1 and PGC1α levels decreased substantially, possibly due to the block in the mitochondrial electron transport chain and reduced NAD/NADH levels. The mitochondrial uncoupling effects of embelin leading to increased NAD/NADH levels followed by enhanced SIRT1, PGC1α and mitochondrial biogenesis were found to confer embelin mediated protection as treatment of cells with SIRT1 inhibitor or siRNA nullified this effect. Embelin (10 mg/kg) also conferred protection in vivo in MPTP mouse model of PD, wherein, MPTP-induced loss of TH staining, reduced striatal dopamine and markers of mitochondrial biogenesis pathway were averted by embelin.  相似文献   

15.

Background

Parkinson’s disease is the second most common neurodegenerative disorders after Alzheimer’s disease. The main cause of the disease is the massive degeneration of dopaminergic neurons in the substantia nigra. Neuronal apoptosis and neuroinflammation are thought to be the key contributors to the neuronal degeneration.

Results

Both CATH.a cells and ICR mice were treated with 1-methyl-4-phenylpyridin (MPP+) to induce neurotoxicity in vitro and in vivo. Western blotting and immunohistochemistry were also used to analyse neurotoxicity, neuroinflammation and aberrant neurogenesis in vivo. The experiment in CATH.a cells showed that the treatment of MPP+ impaired intake of cell membrane and activated caspase system, suggesting that the neurotoxic mechanisms of MPP+ might include both necrosis and apoptosis. Pretreatment of lithospermic acid might prevent these toxicities. Lithospermic acid possesses specific inhibitory effect on caspase 3. In mitochondria, MPP+ caused mitochondrial depolarization and induced endoplasmic reticulum stress via increasing expression of chaperone protein, GRP-78. All the effects mentioned above were reduced by lithospermic acid. In animal model, the immunohistochemistry of mice brain sections revealed that MPP+ decreased the amount of dopaminergic neurons, enhanced microglia activation, promoted astrogliosis in both substantia nigra and hippocampus, and MPP+ provoked the aberrant neurogenesis in hippocampus. Lithospermic acid significantly attenuates all of these effects induced by MPP+.

Conclusions

Lithospermic acid is a potential candidate drug for the novel therapeutic intervention on Parkinson’s disease.  相似文献   

16.
Abstract: Microdialysis was used in a comparative study of the neurotoxic action of MPP+ in the absence or presence of nomifensine (20 µM) in the striatum and substantia nigra. Three different concentrations of MPP+ (1, 2.5, and 5 mM) were perfused for 15 min at 24 (day 1) and 48 h (day 2) after surgery. The dopamine basal value in the striatum was ~17 fmol/min. Nomifensine (20 µM) stimulated dopamine release to ~170 fmol/min. The increase of dopamine extracellular output in the striatum after MPP+ perfusion on day 1 was independent of the concentration of MPP+ perfused and of the absence or presence of nomifensine (20 µM), being ~2,500 fmol/min. The dopamine basal value in the substantia nigra was below the detection limit of our HPLC equipment. Nomifensine (20 µM) stimulated dopamine release to ~6.3 fmol/min. The increase of dopamine extracellular output in the substantia nigra was MPP+ dose-dependent (1 mM, 75 fmol/min; 2.5 mM, 150 fmol/min; and 5 mM, 250 fmol/min) and independent of the presence or absence of nomifensine. On day 2, the presence of nomifensine on day 1 produced a total protection against MPP+ (1 mM) perfusion in the striatum, which was not observed against MPP+ (5 mM). MPP+ (1 mM) did not produce any neurotoxic action in the substantia in the absence or presence of nomifensine. The MPP+ (2.5 mM) effect on dopamine extracellular output in the absence of nomifensine (20 µM) in the substantia nigra on day 2 was similar to that of MPP+ (1 mM) in the striatum. The presence of nomifensine (20 µM) partially prevented the neurotoxic effect of MPP+ (2.5 mM) on dopaminergic cell bodies/dendrites in the substantia nigra. The MPP+ (5 mM) effect on dopamine extracellular output was similar in both structures studied in the absence or presence of nomifensine on day 2. These results suggest that terminals in the striatum are more sensitive to the neurotoxicity of MPP+ than cell bodies/dendrites in the substantia nigra.  相似文献   

17.
18.

Background

Recent attention has focused on understanding the role of the brain-renin-angiotensin-system (RAS) in stroke and neurodegenerative diseases. Direct evidence of a role for the brain-RAS in Parkinson's disease (PD) comes from studies demonstrating the neuroprotective effect of RAS inhibitors in several neurotoxin based PD models. In this study, we show that an antagonist of the angiotensin II (Ang II) type 1 (AT1) receptor, losartan, protects dopaminergic (DA) neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity both in primary ventral mesencephalic (VM) cultures as well as in the substantia nigra pars compacta (SNpc) of C57BL/6 mice (Fig. 1).

Results

In the presence of exogenous Ang II, losartan reduced MPP+ (5 μM) induced DA neuronal loss by 72% in vitro. Mice challenged with MPTP showed a 62% reduction in the number of DA neurons in the SNpc and a 71% decrease in tyrosine hydroxylase (TH) immunostaining of the striatum, whereas daily treatment with losartan lessened MPTP-induced loss of DA neurons to 25% and reduced the decrease in striatal TH+ immunostaining to 34% of control.

Conclusion

Our study demonstrates that the brain-RAS plays an important neuroprotective role in the MPTP model of PD and points to AT1 receptor as a potential novel target for neuroprotection.  相似文献   

19.
Parkinson''s disease primarily results from progressive degeneration of dopaminergic neurons in the substantia nigra. Both neuronal toxicants and genetic factors are suggested to be involved in the disease pathogenesis. The mitochondrial toxicant 1-methyl-4-phenylpyridinium (MPP+) shows a highly selective toxicity to dopaminergic neurons. Recent studies indicate that mutation in the vacuolar protein sorting 35 (vps35) gene segregates with Parkinson''s disease in some families, but how mutation in the vps35 gene causes dopaminergic cell death is not known. Here, we report that enhanced VPS35 expression protected dopaminergic cells against MPP+ toxicity and that this neuroprotection was compromised by pathogenic mutation in the gene. A loss of neuroprotective functions contributes to the pathogenesis of VPS35 mutation in Parkinson''s disease.  相似文献   

20.
The biochemical pathways that mediate the degeneration of dopaminergic neurons in the substantia nigra of patients with Parkinson’s disease are largely unknown. Recently, aberrant cell cycle events have been shown to be associated with neuronal death in several neurodegenerative diseases. In the present study, we investigated the role of DNA polymerases (DNA pols) in 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis in cerebellar granule cells. After exposure to MPP+, the neurons entered S phase of the cell cycle. Neuronal cell cycle re-entry and apoptosis were attenuated by flavopiridol, which is a broad inhibitor of cyclin-dependent kinases (CDKs). MPP+ exposure significantly increased the expression of DNA pol-β and primase but did not affect the expression of the canonical replicative DNA pols, including DNA pol-δ and pol-ε. Dideoxycytidine, which is a pharmacological inhibitor of DNA pol-β, attenuated the neuronal apoptosis mediated by MPP+. In a similar manner, the expression of a dominant negative form of DNA pol-β was also neuroprotective. These results suggest that DNA pol-β may have a causal role in MPP+-induced neuronal apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号