首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Physico-chemical conditions and benthic macroinvertebrates were studied in two adjacent alpine streams in the Tyrolean Alps, Austria, for 2 years, and aquatic insect emergence was recorded for 1 year.
2. In the spring-fed system, maximum discharge and increased concentrations of suspended solids, nitrate and particulate phosphorus occurred during snowmelt in June. In the glacier-fed stream, high discharge and strong diel fluctuations in flow and concentrations of suspended solids created a harsh and unstable environment during summer. Glacial ablation, variation in groundwater inflow, and water inputs from tributaries draining calcareous rocks caused water chemistry to vary both seasonally and longitudinally in glacier-fed Rotmoosache.
3. A total of 126 aquatic or semi-aquatic invertebrate taxa were collected, 94 of which were found in the glacier-fed stream and 120 in the spring-fed stream. Chironomid abundance was 2–8 times and taxa richness 2–3 times lower in the glacier-fed stream than in the spring-fed stream, as was the number of chironomid taxa (72 versus 93 total).
4. These results broadly support the conceptual model by Milner & Petts (1994) concerning glacier-fed stream systems. However, single samples and seasonal means showed relatively high invertebrate abundance and richness, especially during winter, indicating a considerable degree of spatial and temporal variability.
5. We suggest that the seasonal shifts from harsh environmental conditions in summer to less severe conditions in autumn and a rather constant environment in winter are an important factor affecting larval development, life-history patterns and the maintenance of relatively high levels of diversity and productivity in glacier-fed streams.  相似文献   

2.
Ecology of glacier-fed rivers: current status and concepts   总被引:4,自引:0,他引:4  
1. This paper is an introduction to a special issue of Freshwater Biology containing papers dealing with various aspects of the ecology of glacier-fed rivers.
2. Using similar field protocols, a wide range of glacier-fed systems were studied across Europe from the French Pyrenees to Svalbard within the framework of the European Commission project, Arctic and Alpine Stream Ecosystem Research (AASER). Recent investigations from other parts of Europe together with New Zealand and Greenland are also reported. This work has advanced our knowledge of the functioning of these types of rivers and has led to the modification and quantification of the conceptual model of Milner & Petts (1994) .
3. Glacier-fed rivers, by virtue of the dominance of physical variables in shaping macroinvertebrate communities, are not only good indicators of climate change, but also may be suitable testing grounds for examining ecological concepts.  相似文献   

3.
1. We measured NH4+ and PO4?3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm respiration and enzyme activity and channel geomorphology in streams draining forested catchments in the northwestern (Northern California Coast Range and Cascade Mountains) and southeastern (Appalachian and Ouachita mountains) regions of the United States. Our goal was to use measures of biofilm enzyme activity and nutrient uptake to assess nutrient limitation in forested streams across broad regional scales. 2. Geomorphological attributes, biofilm enzyme activity and NH4+ uptake were significantly different among streams in the four study units. There was no study unit effect on PO4?3 uptake. The proportion of the stream channel in pools, % woody debris, % canopy closure, median substrate size (d50), stream width (w), stream velocity (v), discharge (Q), dispersion coefficient (D) and transient storage (As/A) were correlated with biofilm enzyme activity and nutrient uptake in some study units. 3. Canonical correlation analyses across study units revealed significant correlations of NH4Vf and PO4Vf with geomorphological attributes (w, d50, D, % woody debris, channel slope and % pools) and biofilm phosphatase activity. 4. The results did not support our expectation that carbon processing rates by biofilm microbial assemblages would be governed by stream nutrient availability or that resulting biofilm enzyme activity would be an indicator of nutrient uptake. However, the relative abundances of peptidases, phosphatase and glycosidases did yield insight into potential N‐, P‐ and C‐limitation of stream biofilm assemblages, and our use of biofilm enzyme activity represents a novel application for understanding nutrient limitations in forested streams. 5. Regressions of Vf and U against ambient NH4+ and PO4?3 indicated that none of our study streams was either NH4+ or PO4?3 saturated. The Appalachian, Ouachita and Coastal streams showed evidence of NH4+ limitation; the Ouachita and Coastal streams were PO4?3 limited. As a correlate of nutrient limitation and saturation in streams, ratios of total aminopeptidase and phosphatase activities and the ratio of NH4U to PO4U indicate these forested streams are predominantly N‐limited, with only the streams draining Ouachita and Coastal catchments demonstrating appreciable levels of P‐limitation. 6. Our results comparing the stoichiometry of microbial enzyme activity with nutrient uptake ratios and with the molar ratios N and P in stream waters suggest that biological limitations are not strictly the result of stream chemistry and that the assessments of nutrient limitations in stream ecosystems should not be based on chemistry alone. 7. Our present study, along with previous work in streams, rivers and wetlands, suggests that microbial enzyme activities, especially the ratios of total peptidases to phosphatase, are useful indicators of nutrient limitations in aquatic ecosystems.  相似文献   

4.
Microbial biodiversity in groundwater ecosystems   总被引:3,自引:1,他引:2  
  相似文献   

5.
1. In semi‐arid climates, seasonally‐flowing streams provide most of the water required for human use, but knowledge of how water extraction affects ecological processes is limited. Predicted alterations in stream flows associated with the impacts of climate change further emphasize the need to understand these processes. Benthic algae are an important base for stream food webs, but we have little knowledge of how algae survive dry periods or respond to altered flow regimes. 2. We sampled 19 streams within the Grampians National Park, south‐eastern Australia and included four components: a survey of different drought refuges (e.g. permanent pools, dry biofilm on stones and dry leaf packs) and associated algal taxa; a survey of algal regrowth on stones after flows recommenced to determine which refuges contributed to regrowth; reciprocal transplant experiments to determine the relative importance of algal drift and regrowth from dry biofilm in recolonization; direct measurement of algal drift to determine taxonomic composition in relation to benthic assemblage composition. 3. Algae showed little specificity for drought refuges but did depend on them; no species were found that were not present in at least one of the perennial pool, dry biofilm or leaf pack refuges. Perennial pools were most closely correlated with the composition of algal assemblages once flows resumed, but the loss or gain of perennial pools that might arise from stream regulation is unlikely to affect the composition of algal regrowth. However, regulated streams were associated with strong increases in algal density in dry biofilm, including increased densities of Cyanobacteria. 4. A model for algal recolonization in seasonally‐flowing streams identified three pathways for algal recolonization (drift‐dependent, dry biofilm‐dependent and contributions from both), depending on whether streams are diatom‐dominated or dominated by filamentous algae. The model predicted the effects of changes to stream flow regimes on benthic algal recolonization and provides a basis for hypotheses testable in streams elsewhere.  相似文献   

6.
1. Decreases in biodiversity are so widespread that they are now considered a form of global change in their own right. Given the grave nature of this issue, rapid advances in understanding are needed to mitigate further impacts. In this Opinion paper, we argue that palaeolimnological studies have important contributions to make to biodiversity science. 2. Given that long‐term community data are sparse in their geographic coverage and tend to span no more than 5 years, greater insight into biodiversity dynamics can be obtained from palaeoecological analyses. One such approach is palaeolimnology, which is a field that can provide long‐term data on changes in both physico‐chemical and biological components of lake ecosystems. 3. To date, a handful of quantitative palaeolimnological studies have addressed biodiversity questions, focussing primarily on defining the drivers of change in species richness or identifying functional traits that best capture ecosystem processes. Several studies have also quantified the role of spatial variables in determining assemblage structure, a necessary first step in addressing how metacommunity interactions influence biodiversity–ecosystem processes. Overall, these early studies show that palaeolimnological approaches can address both similar and novel questions compared with contemporary ecological studies. However, palaeolimnology allows for a great expansion of the temporal scale of investigation, the quantification of rates of change to stressors and the possibility of conducting experiments by applying resurrection techniques. 4. As an emerging field, there are numerous exciting applications of palaeolimnology to biodiversity science. It is an opportune time to create synergy between contemporary aquatic ecologists and palaeolimnologists.  相似文献   

7.
8.
Aim Small (< 1 km2) alpine glaciers are likely to disappear in this century, resulting in decreased regional habitat heterogeneity in associated streams. Both heterogeneity within and spatial isolation among glacier‐influenced streams can enhance beta diversity of stream‐dwelling organisms. We measured beta at both community and population‐genetic levels within and among streams currently influenced by small Pyrenean glaciers. We aimed to evaluate whether patterns are analogous between the two levels, to apply various approaches for characterizing beta, and to infer the outcome of future glacier loss on regional biodiversity. Location Four glacier‐fed basins in the Parc National des Pyrénées, France. Methods We classified each of 18 stream reaches across the basins into either high‐, mid‐ or low‐‘glaciality’ (glacial influence) groups according to four physicochemical characteristics. At each reach, we collected macroinvertebrate communities and evaluated mitochondrial DNA haplotypes for 11–13 individuals of Baetis alpinus Pictet. Using taxa/haplotypes as basic units, we evaluated community and population‐genetic beta diversity simultaneously. We measured beta diversity in three major ways: as multivariate (Sørensen's dissimilarity, Jost D) and ‘classical’ (gamma/alpha) variation to compare among glaciality groups, and as turnover along the glaciality gradient within each basin. Results For most approaches at both organizational levels, beta was greatest among high‐glaciality reaches, absolute values of variation of beta in high‐glaciality streams were strikingly similar between levels, and the steepest turnover within basins occurred between high‐ and mid‐glaciality reaches. Therefore, high‐glaciality reaches contained assemblages and populations that were unique both within that stream type (among basins) and compared with other stream types within basins. Main conclusions Parallel beta diversity patterns at population‐genetic and community levels suggested that environmental drivers influence these levels analogously. Extreme conditions (e.g. low temperature, high instability, isolation) in high‐glaciality streams probably enhance beta at both levels. Stream beta diversity is likely to decrease substantially with continued glacial reduction in this system.  相似文献   

9.
1. The influence of 11 environmental variables on benthic macroinvertebrate communities was examined in seven glacier-fed European streams ranging from Svalbard in the north to the Pyrenees in the south. Between 4 and 11 near-pristine reaches were studied on each stream in 1996–97.
2. Taxonomic richness, measured at the family or subfamily (for Chironomidae) levels for insects and higher levels for non-insects, increased with latitude from Svalbard (3 taxa) to the Pyrenees (29 taxa).
3. A Generalized Additive Model (GAM) incorporating channel stability [Pfankuch Index (PFAN)], tractive force, Froude number (FROU), water conductivity (COND), suspended solids (SUSP) concentration, and maximum temperature explained 79% of the total deviance of the taxonomic richness per reach. Water temperature and the PFAN of stability made the highest contribution to this deviance. In the model, richness response to temperature was positive linear, whereas the response to the PFAN was bell-shaped with an optimum at an intermediate level of stability.
4. Generalized Additive Models calculated for the 16 most frequent taxa explained between 25 (Tipulidae) and 79% (Heptageniidae) of the deviance. In 10 models, more than 50% of the deviance was explained and 11 models had cross-validation correlation ratios above 0.5. Maximum temperature, the PFAN, SUSP and tractive force (TRAC) were the most frequently incorporated explanatory variables. Season and substrate characteristics were very rarely incorporated.
5. Our results highlight the strong deterministic nature of zoobenthic communities in glacier-fed streams and the prominent role of water temperature and substrate stability in determining longitudinal patterns of macroinvertebrate community structure. The GAMs are proposed as a tool for predicting changes of zoobenthic communities in glacier-fed streams under climate or hydrological change scenarios.  相似文献   

10.
Alpine streams are typically fed from a range of water sources including glacial meltwater, snowmelt, groundwater flow, and surface rainfall runoff. These contributions are projected to shift with climate change, particularly in the Japanese Alps where snow is expected to decrease, but rainfall events increase. The overarching aim of the study was to understand the key variables driving macroinvertebrate community composition in groundwater and snowmelt‐fed streams (n = 6) in the Kamikochi region of the northern Japanese Alps (April–December 2017). Macroinvertebrate abundance, species richness, and diversity were not significantly different between the two stream types. Community structure, however, was different between groundwater and snowmelt‐fed streams with macroinvertebrate taxa specialized for the environmental conditions present in each system. Temporal variation in the abundance, species richness, and diversity of macroinvertebrate communities was also significantly different between groundwater and snowmelt streams over the study period, with snowmelt streams exhibiting far higher levels of variation. Two snowmelt streams considered perennial proved to be intermittent with periodic drying of the streambed, but the macroinvertebrates in these systems rebounded rapidly after flows resumed with no reduction in taxonomic diversity. These same streams, nevertheless, showed a major reduction in diversity and abundance following periods of high flow, indicating floods rather than periodic drying was a major driver of community structure. This conclusion was also supported from functional analyses, which showed that the more variable snowmelt streams were characterized by taxa with resistant, rather than resilient, life‐history traits. The findings demonstrate the potential for significant turnover in species composition with changing environmental conditions in Japanese alpine stream systems, with groundwater‐fed streams potentially more resilient to future changes in comparison to snowmelt‐fed streams.  相似文献   

11.
Microbial biofilms assemble from cells that attach to a surface, where they develop into matrix-enclosed communities. Mechanistic insights into community assembly are crucial to better understand the functioning of natural biofilms, which drive key ecosystem processes in numerous aquatic habitats. We studied the role of the suspended microbial community as the source of the biofilm community in three streams using terminal-restriction fragment length polymorphism and 454 pyrosequencing of the 16S ribosomal RNA (rRNA) and the 16S rRNA gene (as a measure for the active and the bulk community, respectively). Diversity was consistently lower in the biofilm communities than in the suspended stream water communities. We propose that the higher diversity in the suspended communities is supported by continuous inflow from various sources within the catchment. Community composition clearly differed between biofilms and suspended communities, whereas biofilm communities were similar in all three streams. This suggests that biofilm assembly did not simply reflect differences in the source communities, but that certain microbial groups from the source community proliferate in the biofilm. We compared the biofilm communities with random samples of the respective community suspended in the stream water. This analysis confirmed that stochastic dispersal from the source community was unlikely to shape the observed community composition of the biofilms, in support of species sorting as a major biofilm assembly mechanism. Bulk and active populations generated comparable patterns of community composition in the biofilms and the suspended communities, which suggests similar assembly controls on these populations.  相似文献   

12.
Biofilms collected on Plexiglass substrates, from a freshwater pond in northern New York State, were examined microscopically for naked amoebae densities, sizes, diversity, and estimated C‐biomass. Five samples were obtained during summer 2006 and 2007. The densities ranged from 109 to 136/cm2 biofilm surface and 285 to 550/mg biofilm dry weight. Sizes ranged from 13 to 200 μm. Diversities ranged from 4.23 to 4.55. C‐biomass ranged from 64 to 543 ng C/cm2 and 125 to 1,700 μg C/g dry weight. Thirty morphospecies were identified among the five samples, including very large amoebae in the range of 100–200 μm. Large amoebae (≥ 50 μm) accounted for the largest proportion of the C‐biomass.  相似文献   

13.
Alpine streams are dynamic habitats harboring substantial biodiversity across small spatial extents. The diversity of alpine stream biota is largely reflective of environmental heterogeneity stemming from varying hydrological sources. Globally, alpine stream diversity is under threat as meltwater sources recede and stream conditions become increasingly homogeneous. Much attention has been devoted to macroinvertebrate diversity in alpine headwaters, yet to fully understand the breadth of climate change threats, a more thorough accounting of microbial diversity is needed. We characterized microbial diversity (specifically Bacteria and Archaea) of 13 streams in two disjunct Rocky Mountain subranges through 16S rRNA gene sequencing. Our study encompassed the spectrum of alpine stream sources (glaciers, snowfields, subterranean ice, and groundwater) and three microhabitats (ice, biofilms, and streamwater). We observed no difference in regional (γ) diversity between subranges but substantial differences in diversity among (β) stream types and microhabitats. Within‐stream (α) diversity was highest in groundwater‐fed springs, lowest in glacier‐fed streams, and positively correlated with water temperature for both streamwater and biofilm assemblages. We identified an underappreciated alpine stream type—the icy seep—that are fed by subterranean ice, exhibit cold temperatures (summer mean <2°C), moderate bed stability, and relatively high conductivity. Icy seeps will likely be important for combatting biodiversity losses as they contain similar microbial assemblages to streams fed by surface ice yet may be buffered against climate change by insulating debris cover. Our results show that the patterns of microbial diversity support an ominous trend for alpine stream biodiversity; as meltwater sources decline, stream communities will become more diverse locally, but regional diversity will be lost. Icy seeps, however, represent a source of optimism for the future of biodiversity in these imperiled ecosystems.  相似文献   

14.
【目的】了解罗氏沼虾亲虾越冬时循环养殖系统对水质的调控效果,探明其中微生物群落的作用。【方法】采集循环养殖系统运行88 d后的越冬池池水、池中人工水草(普通纤维膜)以及外置式生物滤器中的纳米纤维膜等3种不同基质上的微生物,利用DNA抽提、PCR扩增和定量以及高通量Mi Seq测序技术等对3种不同基质上的微生物进行16S r RNA基因序列V4-V5区的测定和分析,并根据测序得到的双端测序读长(Pair-end reads)进行质量控制和过滤,之后进行操作分类单元(OTU)聚类分析,并基于OTU对微生物群落的多样性指数和群落结构进行分析;每3-4 d对越冬池池水水质进行监测。【结果】养殖池塘的水质保持在良好的状态,其中氨氮和亚硝氮浓度控制在0.17±0.08 mg/L和0.28±0.15 mg/L;不同基质上的微生物组成和多样性都不相同。在3种基质上共检测并鉴定出细菌64种,隶属于9门64属,包括变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、浮霉菌门(Planctomycetes)、硝化螺旋菌门(Nitrospirae)、酸杆菌门(Acidobacteria)和绿菌门(Chlorobi)。从属水平上对3种基质上的细菌进行分析,发现养殖池水中含量最高的为丛毛单菌科下的一个未分类类群(Comamonadaceae_unclassified),其也是3种基质的共有优势类群;普通纤维膜上为Inhella,纳米纤维膜上则是小纺锤状菌属(Fusibacter)。3种基质上细菌群落多样性顺序为:纳米纤维膜普通纤维膜养殖池水。通过对亲虾越冬养殖全过程的水质监测,发现越冬期间亲虾池水质始终保持在良好状态,并且在循环水系统开启约40 d后水质达到了相对稳定的状态。【结论】通过在育苗池中悬挂人工水草,配合内含纳米纤维膜的外置式生物滤器,可使罗氏沼虾越冬亲虾池保持良好的水质。随着新型材料科学的发展,开发出适用于水产养殖业的滤料很有必要。  相似文献   

15.
高寒生态系统微生物群落研究进展   总被引:4,自引:1,他引:4  
高寒生态系统分布在高纬度或高海拔、气候寒冷的地区,包括北极苔原、高山苔原、青藏高原等.高寒生态系统对气候变化非常敏感,其土壤中储存大量的有机碳,对全球的碳平衡起关键作用.微生物是生物地球化学循环的主要驱动者,微生物群落对气候变化的响应和反馈影响生态系统的功能与稳定性.本文回顾了高寒生态系统微生物群落组成、多样性与空间分布,以及微生物群落对气候变化(增温、氮沉降、火干扰)的响应,为拓展我国高寒生态系统微生物研究提供基础.  相似文献   

16.

Aims

To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability.

Methods and Results

To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture‐based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple‐metal resistant, with 15% exhibiting dual‐metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, < 0·05) between multiple‐metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0–20 m) and middle (20–40 m) tailings zones being highly significant (< 0·01) from the lower zone (40–60 m) and the difference in diversity of the upper and middle tailings zone being significant (< 0·05). Phylotypes closely related to well‐known sulfate‐reducing and iron‐reducing bacteria were identified with low abundance, yet relatively high diversity.

Conclusions

The presence of a population of metabolically‐diverse, metal‐resistant micro‐organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long‐term geochemistry of the tailings.

Significance and Impact of the study

This study is the first investigation of the diversity and functional potential of micro‐organisms present in low permeability, high pH uranium mine tailings.  相似文献   

17.
JANI HEINO 《Freshwater Biology》2005,50(9):1578-1587
1. Biodiversity–environment relationships are increasingly well‐understood in the context of species richness and species composition, whereas other aspects of biodiversity, including variability in functional diversity (FD), have received rather little rigorous attention. For streams, most studies to date have examined either taxonomic assemblage patterns or have experimentally addressed the importance of species richness for ecosystem functioning. 2. I examined the relationships of the functional biodiversity of stream macroinvertebrates to major environmental and spatial gradients across 111 boreal headwater streams in Finland. Functional biodiversity encompassed functional richness (FR – the number of functional groups derived from a combination of functional feeding groups and habit trait groups), FD – the number of functional groups and division of individuals among these groups, and functional evenness (FE – the division of individuals among functional groups). Furthermore, functional structure (FS) comprised the composition and abundance of functional groups at each site. 3. FR increased with increasing pH, with additional variation related to moss cover, total nitrogen, water colour and substratum particle size. FD similarly increased with increasing pH and decreased with increasing canopy cover. FE decreased with increasing canopy cover and water colour. Significant variation in FS was attributable to pH, stream width, moss cover, substratum particle size, nitrogen, water colour with the dominant pattern in FS being related to the increase of shredder‐sprawlers and the decrease of scraper‐swimmers in acidic conditions. 4. In regression analysis and redundancy analysis, variation in functional biodiversity was not only related to local environmental factors, but a considerable proportion of variability was also attributable to spatial patterning of environmental variables and pure spatial gradients. For FR, 23.4% was related to pure environmental effects, 15.0% to shared environmental and spatial effects and 8.0% to spatial trends. For FD, 13.8% was attributable to environmental effects, 15.2% to shared environmental and spatial effects and 5% to spatial trends. For FE, 9.0% was related to environmental variables, 12.7% to shared effects of environmental and spatial variables and 4.5% to spatial variables. For FS, 13.5% was related to environmental effects, 16.9% to shared environmental and spatial effects and 15.4% to spatial trends. 5. Given that functional biodiversity should portray variability in ecosystem functioning, one might expect to find functionally rather differing ecosystems at the opposite ends of major environmental gradients (e.g. acidity, stream size). However, the degree to which variation in the functional biodiversity of stream macroinvertebrates truly portrays variability in ecosystem functioning is difficult to judge because species traits, such as feeding roles and habit traits, are themselves strongly affected by the habitat template. 6. If functional characteristics show strong responses to natural environmental gradients, they also are likely to do so to anthropogenic environmental changes, including changes in habitat structure, organic inputs and acidifying elements. However, given the considerable degree of spatial structure in functional biodiversity, one should not expect that only the local environment and anthropogenic changes therein are responsible for this variability. Rather, the spatial context, as well as natural variability along environmental gradients, should also be explicitly considered in applied research.  相似文献   

18.
The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback.  相似文献   

19.
  1. Land-use change is a leading driver of biodiversity loss, especially in tropical fresh waters where the conversion of natural forest to monoculture plantations impacts freshwater fish assemblages. The environmental pathways underpinning shifts in fish assemblages, however, are poorly understood, but could potentially be inferred from trait–environment relationships.
  2. We addressed this knowledge gap using eco-morphological traits to explain fish occurrences in oil palm-impacted streams of the Endau drainage in Peninsular Malaysia. We also investigated how traits relate to differences in environmental conditions associated with land-use change. We then integrate findings from the above to test how potential pathways of land-use driven environmental changes can impact species occurrences through effects on life history, feeding habits, and mobility.
  3. Mixed-effects models show that fishes with superior (upward-facing) mouths and low body mass were more likely to occur in oil palm streams than forest streams, and these traits were associated with grass-dominated riparian zones and reduced woody debris in oil palm streams, respectively. Structural equation models show that mouth positions statistically mediated the effect of riparian vegetation on fish species occurrences in oil palm streams. Specifically, fishes with superior mouths were more likely to feed on terrestrial invertebrates.
  4. Our analysis of easily measurable traits revealed pathways of land-use impact that are potentially more widely applicable than conventional taxa-based approaches. Fishes with superior mouths tended to occur in oil palm streams as they were able to more effectively exploit inputs of terrestrial invertebrates that are potentially associated with grass-dominated riparian vegetation.
  5. Moreover, shifts in traits may suggest land-use driven changes in stream ecosystem functioning (e.g. in terms of the role of terrestrial subsidies), thereby informing targeted management actions in land-use impacted habitats (e.g. retention/restoration of riparian trees).
  相似文献   

20.
Long-term records of benthic macroinvertebrates in high-latitude streams are essential for understanding climatic changes, including extreme events (e.g. floods). Data extending over multiple decades are typically scarce. Here, we investigated macroinvertebrate community structural change (including alpha and beta diversity and gain and loss of species) over 22 years (1994–2016) in 10 stream systems across Denali National Park (Alaska, USA) in relation to climatological and meteorological drivers (e.g. air temperature, snowpack depth, precipitation). We hypothesised that increases in air temperature and reduced snowpack depth, due to climatic change, would reduce beta and gamma diversity but increase alpha diversity. Findings showed temporal trends in alpha diversity were variable across streams, with oscillating patterns in many snowmelt- and rainfall runoff-fed streams linked to climatic variation (temperature and precipitation), but increased over time in several streams supported by a mixture of water sources, including more stable groundwater-fed streams. Beta-diversity over the time series was highly variable, yet marked transitions were observed in response to extreme snowpack accumulation (1999–2000), where species loss drove turnover. Gamma diversity did not significantly increase or decrease over time. Investigating trends in individual taxa, several taxa were lost and gained during a relative constrained time period (2000–2006), likely in response to climatic variability and significant shifts in instream environmental conditions. Findings demonstrate the importance of long-term biological studies in stream ecosystems and highlight the vulnerability of high-latitude streams to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号