共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell reports》2023,42(8):112969
- Download : Download high-res image (220KB)
- Download : Download full-size image
2.
《Cell reports》2023,42(4):112344
- Download : Download high-res image (175KB)
- Download : Download full-size image
3.
Chuva de Sousa Lopes SM van den Driesche S Carvalho RL Larsson J Eggen B Surani MA Mummery CL 《Developmental biology》2005,284(1):194-203
Transforming growth factor beta (TGFbeta) inhibits proliferation and promotes the migration of primordial germ cells (PGCs) towards explants of gonadal ridges in vitro. However, its effects in vivo are still unclear. Here, we analyzed the behavior of PGCs in embryos lacking TGFbeta signaling via the type I receptor ALK5. TGFbeta in vivo was neither a chemoattractant for PGCs, nor did it affect their proliferation during migration towards the gonadal ridges up to embryonic day (E)10. Unexpectedly, the absence of TGFbeta signaling in fact resulted in significant facilitation of PGC migration out of the hindgut, due to the reduced deposition of collagen type I surrounding the gut of Alk5-deficient mutant embryos. Migratory PGCs adhere strongly to collagen; therefore, reduced collagen type I along the gut may result in reduced adhesion, facilitating migration into the dorsal mesenterium and gonadal ridges. Our results provide new evidence for the role of TGFbeta signaling in migration of PGCs in vivo distinct from that described previously. 相似文献
4.
Germline stem cells (GSCs) in Drosophila are descendants of primordial germ cells (PGCs) specified during embryogenesis. The precise timing of GSC establishment in the testis has not been determined, nor is it known whether mechanisms that control GSC maintenance in the adult are involved in GSC establishment. Here, we determine that PGCs in the developing male gonad first become GSCs at the embryo to larval transition. This coincides with formation of the embryonic hub; the critical signaling center that regulates adult GSC behavior within the stem cell microenvironment (niche). We find that the Jak-STAT signaling pathway is activated in a subset of PGCs that associate with the newly-formed embryonic hub. These PGCs express GSC markers and function like GSCs, while PGCs that do not associate with the hub begin to differentiate. In the absence of Jak-STAT activation, PGCs adjacent to the hub fail to exhibit the characteristics of GSCs, while ectopic activation of the Jak-STAT pathway prevents differentiation. These findings show that stem cell formation is closely linked to development of the stem cell niche, and suggest that Jak-STAT signaling is required for initial establishment of the GSC population in developing testes. 相似文献
5.
小鼠原生殖细胞建系过程及其分化特性的研究 总被引:1,自引:0,他引:1
以小鼠8.5dpc、10.5dpc、12.5dpc胚胎为材料,分离其中包含PGC的胚胎组织,使其生长于饲养层细胞上,在生长因子LIF、SCF和bFGF的共同作用下存活增殖,形成PGC克隆,经过几次分散转移至新的饲养层细胞,产生稳定增殖的EG干细胞克隆,共建成5株EG细胞系,AKP染色以及oct-4基因表达产物的免疫荧光检测均显示阳性。EG1、EG2、EG3、EG4、EG5,分别来自8.5、10.5dpc的胚胎,没有得到长期培养的12.5dpc的EG细胞系。EG细胞系在有饲养层细胞或添加LIF的环境中可稳定传代,保持不分化状态,至少15代内正常核型细胞所占比例80%以上。去除抑制分化因素的前提下,悬浮培养的EG细胞形成胚体,分化出类似胚胎内胚层和外胚层的细胞结构;贴壁生长的胚体能产生不同类型的分化细胞,包括上皮细胞、成纤维细胞、神经细胞等。EG细胞在裸鼠体内形成畸胎瘤。以上结果证实我们建立的EG细胞系具发育多能性,为研究早期胚胎和生殖细胞生长分化提供了模型。 相似文献
6.
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。 相似文献
7.
《Cell reports》2023,42(2):112116
- Download : Download high-res image (219KB)
- Download : Download full-size image
8.
Petra Gevers John Dulos Jos G. M. van den Boogaart Lucy P. M. Timmermans 《Development genes and evolution》1992,201(5):275-283
Summary Lucifer Yellow-Dextran labelling of lower layer cells (LLC), sometimes together with upper layer cells (ULC), of the 64-cellBarbus conchonius embryo resulted in labelled primordial germ cells (PGCs) at 12 h after fertilization (a.f.) in about 25% of cases. The presence of labelled PGCs was independent of the location of the injected blastomere with respect to the later orientation of the embryonic axis. After injection of an ULC alone, however, labelled PGCs were never found. Also, the distribution of labelled somatic cells differed between the ULC- and LLC-injected embryos. When we found fluorescent PGCs, only a few of them were labelled, suggesting that either a single predecessor exists earlier than the 64-cell stage or that the formation of germ cells is a polyclonal process. Tracing the fluorescent cells at successive stages of development shows an extensive mixing with unlabelled cells during the epiboly stage, which might well be the cause of partly unpredictable cell lineages. The chance of being committed to a specific fate is different for the ULC and LLC descendants. This might be due to relatively limited cell mixing between these two cell populations. 相似文献
9.
M.-C. Lavoir P. K. Basrur K. J. Betteridge 《Molecular reproduction and development》1994,37(4):413-424
Gonadal cell suspensions were made from bovine fetuses of 35–55-, 56–80-, and 80–130-day age groups corresponding to the periods predominated by primordial germ cells (PGCs), oogonia, and meiotic cells, respectively. Germ cells identified on morphological criteria prior to their isolation from suspensions were compared histochemically and morphologically with cells in cryosections, impression smears, and semithin sections of similar gonads. Oocytes were distinguished by their chromosomal configurations in cell spreads. In suspensions from 35–55-day fetuses, cells considered to be PGCs stood out by their size, large nucleus, intracytoplasmic vesicles, and occasional blebbing. The somatic cells were smaller and contained little cytoplasm and few vesicles. In bovine gonads, in contrast to murine gonads, alkaline phosphatase (AP) activity was not specific enough to identify germ cells once they had entered the gonad. In ovaries from the 56–80-day age group, cells similar to PGCs, but slightly larger and with more cytoplasmic vesicles, were identified as oogonia. The cytoplasmic vesicles stained positively for lipid. In ovaries of 80–130-day fetuses, oogonia, oocytes, degenerating germ cells, and multinucleate germ cells were recognized. Degenerating germ cells exhibited a variety of morphological characteristics and were consistently positive for acid-phosphatase activity. Binucleate germ cells appeared around day 85 of gestation, while multinucleate germ cells were seen from day 95. It was concluded that bovine mitotic germ cells can be isolated from gonadal cell suspensions and that the best time to recover them is between 50 and 70 days of gestation. © 1994 Wiley-Liss, Inc. 相似文献
10.
Germ cell depletion 2 (gcd2) is a chemically induced recessive mutation that causes infertility in male and female mice. The infertility is caused by germ cell depletion as early as 11.5 days post-coitum, when primordial germ cells have completed their migration to the embryonic gonads. Thus, the gcd2 mutation affects the proliferation and/or survival of germ cells after they arrive in the embryonic gonad, a developmental time when little is known about the requirements for germ cell proliferation and survival. The sterility phenotype is incompletely penetrant, has variable expressivity, and is modulated by strain background. The penetrance ranges from 37% in strain C57BL/6J to nearly 100% in CAST/EiJ. Genetic mapping localized gcd2 to a approximately 1Mb region on Chr 2. This interval contains a small number of annotated genes, of which none are known to have a role in germ cell development. Sequencing the coding regions of these genes failed to reveal a mutation, and BACs containing two of the candidate genes failed to rescue the phenotype. This raises the possibilities that the gcd2 mutation resides in non-coding sequences, and regulates genes outside the genetically defined critical region. 相似文献
11.
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。 相似文献
12.
Many studies demonstrated that chicken primordial germ cells (PGCs) could maintain undifferentiated state on mouse embryonic fibroblast feeders supplemented with growth factors and cytokines. However, the xenosupport systems may run risk of cross-transfer of animal pathogens from the other animal feeder, matrix to the PGCs, then influencing later transgenic technology. In this study, chicken PGCs were identified by alkaline phosphatase, stage-specific embryonic antigen-1 and Oct-4 immunocytochemical stainings. Three different homologous somatic cell feeder layers (chicken embryonic fibroblast feeder layer, CEF; embryonic skeletal myoblast feeder layer; follicular granulosa cell feeder layer) were used to support growth and proliferation of PGCs to find a better supporting culture system. In addition, the effects of fetal calf serum (FCS), leukemia inhibitory factor (LIF) and the combination of insulin, transferring and selenite (ITS) on PGC proliferation were compared. Results showed that CEF was the best supporter for PGC growth and proliferation, which was verified by 5-bromo-2'-deoxyuridine incorporation stain. FCS alone or in combination with LIF could significantly promote PGC proliferation in the presence of CEF in ITS medium. This study will contribute to providing a safer supporting system for chicken PGC amplification in vitro, and may be applied in transgenic chicken production and transplantation therapy. 相似文献
13.
Etches RJ 《Transgenic research》2006,15(5):521-526
After 25 years, the search for the avian cell that can be cultured indefinitely, genetically modified, and clonally derived while retaining its ability to enter the germline has ended. van de Lavoir et al. [2006a, Nature 441:766–769] have defined the conditions for culture and genetic modification of primordial germ cells (PGCs) and shown that these cells are transmitted at high rates through the germline. The advent of this technology provides the ability to introduce transgenes of any size and to make site-specific changes to the genome. Although PGCs are committed to the germline, they can be induced into somatically committed embryonic germ (EG) cells by changing the culture conditions. EG cells resemble embryonic stem (ES) cells that are also committed to the somatic lineages (van de Lavoir 2006b, Mech Dev 123:31–41). These cell-based systems facilitate insertion of larger transgenes that provide high level, developmentally regulated and tissue-specific expression in transgenic chimeras and their offspring. Following introduction of a transgene, high-grade somatic chimeras can be made with ES and EG cells within 4 weeks and 4 months respectively, allowing quick assessment of the transgenic phenotype. Following introduction of a tansgene into PGCs, high-grade germline chimeras can be made within 8–9 weeks and the high rate of germline transmission of G0 chimeras produces a large cohort of transgenic chicks in 16–17 weeks. PGC, EG and ES cells can be grown in conventional laboratory settings and small flocks of recipient birds or third-party vendors can supply recipient embryos to make somatic and/or germline chimeras. In general, animal management is routine although some specialized equipment and technical skill is required to incubate chimeras in surrogate shells.An erratum to this article can be found at 相似文献
14.
《Cell reports》2023,42(4):112353
- Download : Download high-res image (289KB)
- Download : Download full-size image
15.
《Cell reports》2023,42(6):112571
- Download : Download high-res image (210KB)
- Download : Download full-size image
16.
《Cell reports》2023,42(2):112100
- Download : Download high-res image (140KB)
- Download : Download full-size image
17.
《Cell reports》2023,42(6):112561
- Download : Download high-res image (134KB)
- Download : Download full-size image
18.
Kenshiro Hara Masami Kanai-Azuma Mami Uemura Hiroshi Shitara Choji Taya Hiromichi Yonekawa Hayato Kawakami Naoki Tsunekawa Masamichi Kurohmaru Yoshiakira Kanai 《Developmental biology》2009,330(2):427-439
During mouse gastrulation, primordial germ cells (PGCs) become clustered at the base of the allantois and move caudally into the hindgut endoderm before entering the genital ridges. The precise roles of endoderm tissues in PGC migration, however, remain unclear. By using Sox17 mutants with a specific endoderm deficiency, we provide direct evidence for the crucial role of hindgut expansion in directing proper PGC migration. In Sox17-null embryos, PGCs normally colonize in the allantois and then a small front-row population of PGCs moves properly into the most posterior gut endoderm. Defective hindgut expansion, however, causes the failure of further lateral PGC movement, resulting in the immobilization of PGCs in the hindgut entrance at the later stages. In contrast, the majority of the remaining PGCs moves into the visceral endoderm layer, but relocate outside of the embryonic gut domain. This leads to a scattering of PGCs in the extraembryonic yolk sac endoderm. This aberrant migration of Sox17-null PGCs can be rescued by the supply of wildtype hindgut cells in chimeric embryos. Therefore, these data indicate that hindgut morphogenic movement is crucial for directing PGC movement toward the embryonic gut side, but not for their relocation from the mesoderm into the endoderm. 相似文献
19.
Northrup E Eisenblätter R Glage S Rudolph C Dorsch M Schlegelberger B Hedrich HJ Zschemisch NH 《Experimental cell research》2011,(13):1885-1894
Pluripotent cells referred to as embryonic germ cells (EGCs) can be derived from the embryonic precursors of the mature gametes: the primordial germ cells (PGCs). A homozygous mutation (ter) of the dead-end homolog 1 gene (Dnd1) in the rat causes gonadal teratocarcinogenesis and sterility due to neoplastic transformation and loss of germ cells. We mated heterozygous ter/+ WKY-Dnd1ter/Ztm rats and were able to cultivate the first genital ridge-derived EGCs of the rat embryo at day 14.5 post coitum (pc). Genotyping revealed that ten EGC lines were Dnd1 deficient, while only one wild type cell line had survived in culture. This suggests that the inactivation of the putative tumor suppressor gene Dnd1 facilitates the immortalization of late EGCs in vitro. Injection of the wild type EGCs into blastocysts resulted in the first germ-line competent chimeras. These new pluripotent rat EGCs offer an innovative approach for studies on germ cell tumor development as well as a new tool for genetic manipulations in rats. 相似文献
20.
Shogo Higaki Yutaka Kawakami Yoshiki Eto Etsuro Yamaha Masashi Nagano Seiji Katagiri Tatsuyuki Takada Yoshiyuki Takahashi 《Cryobiology》2013
The aim of this study was to examine the effects of partial removal of yolk and cryoprotectant mixtures on the viability of cryopreserved primordial germ cells (PGCs) and elucidated the differentiation ability of cryopreserved PGCs in zebrafish. First, dechorionated yolk-intact and yolk-depleted (partially yolk removed) embryos, PGCs of which were labeled with green fluorescence protein (GFP), were vitrified after serial exposures to pretreatment solution (PS) and vitrification solution (VS) that contained ethylene glycol (EG), dimethyl sulfoxide (Me2SO) or propylene glycol at 3 and 5 M, respectively. Although partial removal of yolk improved the viability of cryopreserved PGCs, numbers of PGCs with pseudopodial movement were limited (0–2.6 cells/embryo). Next, yolk-depleted embryos were cryopreserved using mixtures of two types of cryoprotectants. The maximum survival rate of PGCs (81%; 9.6 cells/embryo) was obtained from the yolk-depleted embryos vitrified using PS containing 2 M EG + 1 M Me2SO and VS containing 3 M EG + 2 M Me2SO and 56% (5.3 cells/embryo) of PGCs showed pseudopodial movement. Finally, PGCs recovered from yolk-depleted embryos (wild-type) that were vitrified under the optimum condition were transplanted individually into 236 sterilized recipient blastulae (recessive light-colored). Seven recipients matured and generated progeny with characteristics inherited from the PGC donor. In conclusion, the authors confirmed the beneficial effects of partial removal of yolk on the viability of cryopreserved PGCs and that the viability of the PGCs was improved by using PS and VS that contained two types of cryoprotectants, especially PS containing 2 M EG + 1 M Me2SO and VS containing 3 M EG + 2 M Me2SO, and that recovered PGCs retained ability to differentiate into functional gametes. 相似文献