首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Patients with ovarian cancer frequently develop acquired drug resistance after the long-term chemotherapy, leading to disease progression. Enhanced epithelial–mesenchymal transition (EMT) has been implicated in chemoresistance of ovarian cancer cells; however, the molecular mechanisms involved are largely undefined. Pyruvate dehydrogenase kinase 1 (PDK1), a key regulatory enzyme in glucose metabolism, has been recognized as a gatekeeper of the Warburg effect, a hallmark of cancer. In this study, the function of PDK1 in cisplatin resistance of ovarian cancer in terms of growth and EMT was investigated. PDK1 was upregulated in cisplatin-resistant ovarian cancer cells. PDK1 knockdown in resistant cells led to increased sensitivity to cisplatin-induced cell death and apoptosis. PDK1 downregulation also reversed the EMT and cell motility in cisplatin-resistant cells. In a mouse xenograft model, tumors derived from PDK1-silenced ovarian cancer cells exhibited decreased tumor growth and EMT compared with control after the cisplatin treatment. Mechanistically, PDK1 overexpression led to increased phosphorylation of EGFR, and blocking EGFR kinase activity by erlotinib reversed cisplatin resistance induced by PDK1 overexpression. Furthermore, in patients with ovarian cancer, higher PDK1 and p-EGFR levels were associated with chemoresistance. These results supported that PDK1 contributes to chemoresistance of ovarian cancer by activating EGFR. Therefore, PDK1 may serve as a promising target to combat chemoresistance of ovarian cancer.  相似文献   

9.
10.
11.
12.
13.
14.
Ovarian cancer is one of the deadliest gynecologic malignancies and is the seventh leading cause of mortalities and morbidities globally. Although there are various therapeutic strategies, a major challenge for scientific community is to come up with effective strategy to treat ovarian cancer. Tilianin, a polyphenol flavonoid is well known for its extensive biological actions like cardioprotective, neuroprotective, anti-oxidant, anti-inflammatory, anti-diabetic and anti-tumor properties. The current study is designed to investigate the anti-cancer action of Tilianin in ovarian cancer (PA-1) cells. The findings of this study revealed that Tilianin treatment results in significant and concentration dependent decrease in cell viability. The growth inhibiting action of Tilianin is associated with apoptosis which was confirmed by DAPI and AO/EtBr staining. The Tilianin-triggered apoptosis in PA-1 cells was correlated with elevated generation of ROS, loss of mitochondrial membrane potential, alterations in pro-apoptotic (upregulated mRNA expression of Bax) and anti-apoptotic (downregulated mRNA expression of Bcl2) factors and activation of caspase-8, −9 and −3. Cell cycle analysis revealed that Tilianin treatment prevented G1/S transition through reduced mRNA expression of cyclin D1. Additionally, the findings of this study also showed Tilianin inhibited JAK2/STAT3 signaling (downregulated expression of pJAK2, JAK2, pSTAT3, and STAT3) with no change in mRNA expression level of ERK indicating its non-involvement in the apoptotic and/or growth inhibition of ovarian cancer cells. In conclusion, the findings of this exploration provided clear evidence of anti-cancer effects of Tilianin in PA-1 cells through its anti-proliferative action, ability to induce apoptosis both through extrinsic and intrinsic pathways, cell cycle (G1/S) arrest and JAK2/STAT3 signaling inhibition.  相似文献   

15.
16.
Adult T cell leukemia is an aggressive and frequently fatal malignancy that expressess constitutively activated growth-signaling pathways in association with deregulated growth and resistance to apoptosis. Curcumin (diferuloylmethane) is a naturally occurring yellow pigment, isolated from the rhizomes of the plant Curcuma longa that has traditionally been used in the treatment of injury and inflammation. But the effect and mechanism of action of curcumin on T cell leukemia is not known. To investigate the antitumor activity of curcumin in T cell leukemia, we examined its effect on constitutive phosphorylation of JAK and STAT proteins, proliferation, and apoptosis in HTLV-I-transformed T cell lines. HTLV-I-transformed T cell leukemia lines, MT-2, HuT-102, and SLB-1, express constitutively phosphorylated JAK3, TYK2, STAT3, and STAT5 signaling proteins. In vitro treatment with curcumin induced a dose-dependent decrease in JAK and STAT phosphorylation resulting in the induction of growth-arrest and apoptosis in T cell leukemia. The induction of growth-arrest and apoptosis in association with the blockade of constitutively active JAK-STAT pathway suggests this be a mechanism by which curcumin induces antitumor activity in T cell leukemia.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号