首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently identified and cloned the receptor for subgroup C avian sarcoma and leukosis viruses [ASLV(C)], i.e., Tvc, a protein most closely related to mammalian butyrophilins, which are members of the immunoglobulin protein family. The extracellular domain of Tvc contains two immunoglobulin-like domains, IgV and IgC, which presumably each contain a disulfide bond important for native function of the protein. In this study, we have begun to identify the functional determinants of Tvc responsible for ASLV(C) receptor activity. We found that the IgV domain of the Tvc receptor is responsible for interacting with the glycoprotein of ASLV(C). Additional experiments demonstrated that a domain was necessary as a spacer between the IgV domain and the membrane-spanning domain for efficient Tvc receptor activity, most likely to orient the IgV domain a proper distance from the cell membrane. The effects on ASLV(C) glycoprotein binding and infection efficiency were also studied by site-directed mutagenesis of the cysteine residues of Tvc as well as conserved amino acid residues of the IgV Tvc domain compared to other IgV domains. In this initial analysis of Tvc determinants important for interacting with ASLV(C) glycoproteins, at least two aromatic amino acid residues in the IgV domain of Tvc, Trp-48 and Tyr-105, were identified as critical for efficient ASLV(C) infection. Interestingly, one or more aromatic amino acid residues have been identified as critical determinants in the other ASLV(A-E) receptors for a proper interaction with ASLV glycoproteins. This suggests that the ASLV glycoproteins may share a common mechanism of receptor interaction with an aromatic residue(s) on the receptor critical for triggering conformational changes in SU that initiate the fusion process required for efficient virus infection.  相似文献   

2.
T cell Ig-like mucin-like-1 (TIM-1) is an important asthma susceptibility gene, but the immunological mechanisms by which TIM-1 functions remain uncertain. TIM-1 is also a receptor for phosphatidylserine (PtdSer), an important marker of cells undergoing programmed cell death, or apoptosis. We now demonstrate that NKT cells constitutively express TIM-1 and become activated by apoptotic cells expressing PtdSer. TIM-1 recognition of PtdSer induced NKT cell activation, proliferation, and cytokine production. Moreover, the induction of apoptosis in airway epithelial cells activated pulmonary NKT cells and unexpectedly resulted in airway hyperreactivity, a cardinal feature of asthma, in an NKT cell-dependent and TIM-1-dependent fashion. These results suggest that TIM-1 serves as a pattern recognition receptor on NKT cells that senses PtdSer on apoptotic cells as a damage-associated molecular pattern. Furthermore, these results provide evidence for a novel innate pathway that results in airway hyperreactivity and may help to explain how TIM-1 and NKT cells regulate asthma.  相似文献   

3.
During ongoing C-type retrovirus infection, the probability of leukemia caused by insertional gene activation is markedly increased by the emergence of recombinant retroviruses that repeatedly infect host cells. The murine mink cell focus-inducing (MCF) viruses with this property have acquired characteristic changes in the N-terminal domain of their envelope glycoprotein that specify binding to a different receptor than the parental ecotropic virus. In this report, we show that MCF virus infection occurs through binding to this receptor (termed Syg1) and, remarkably, by a second mechanism that does not utilize the Syg1 receptor. By the latter route, the N-terminal domain of the ecotropic virus glycoprotein expressed on the cell surface in a complex with its receptor activates the fusion mechanism of the MCF virus in trans. The rate of MCF virus spread through a population of permissive human cells was increased by establishment of trans activation, indicating that Syg1 receptor-dependent and -independent pathways function in parallel. Also, trans activation shortened the interval between initial infection and onset of cell-cell fusion associated with repeated infection of the same cell. Our findings indicate that pathogenic retrovirus infection may be initiated by virus binding to cell receptors or to the virus envelope glycoprotein of other viruses expressed on the cell surface. Also, they support a broader principle: that cooperative virus-virus interactions, as well as virus-host interactions, shape the composition and properties of the retrovirus quasispecies.  相似文献   

4.
Coil DA  Miller AD 《Journal of virology》2005,79(17):11496-11500
Enveloped virus vectors are used in a wide variety of applications. We have discovered that treatment of cultured cells with phosphatidylserine (PS) liposomes can increase virus vector infection by up to 20-fold. This effect does not abrogate virus receptor requirements, is specific to PS compared to other phospholipids, and is limited to enveloped viruses. Furthermore, the enhancement of infection does not occur through increases in virus receptor levels or virus binding, indicating that virus fusion is enhanced. The liposomes are easily generated, store well, and allow enhanced infection with a variety of virus vectors and cell types.  相似文献   

5.
Acid sphingomyelinase (ASMase) converts the lipid sphingomyelin (SM) to phosphocholine and ceramide and has optimum activity at acidic pH. Normally, ASMase is located in lysosomes and endosomes, but membrane damage or the interaction with some bacterial and viral pathogens can trigger its recruitment to the plasma membrane. Rhinovirus and measles viruses each require ASMase activity during early stages of infection. Both sphingomyelin and ceramide are important components of lipid rafts and are potent signaling molecules. Each plays roles in mediating macropinocytosis, which has been shown to be important for ebolavirus (EBOV) infection. Here, we investigated the role of ASMase and its substrate, SM, in EBOV infection. The work was performed at biosafety level 4 with wild-type virus with specificity and mechanistic analysis performed using virus pseudotypes and virus-like particles. We found that virus particles strongly associate with the SM-rich regions of the cell membrane and depletion of SM reduces EBOV infection. ASM-specific drugs and multiple small interfering RNAs strongly inhibit the infection by EBOV and EBOV glycoprotein pseudotyped viruses but not by the pseudotypes bearing the glycoprotein of vesicular stomatitis virus. Interestingly, the binding of virus-like particles to cells is strongly associated with surface-localized ASMase as well as SM-enriched sites. Our work suggests that ASMase activity and SM presence are necessary for efficient infection of cells by EBOV. The inhibition of this pathway may provide new avenues for drug treatment.  相似文献   

6.
To explore mechanisms of entry for Ebola virus (EBOV) glycoprotein (GP) pseudotyped virions, we used comparative gene analysis to identify genes whose expression correlated with viral transduction. Candidate genes were identified by using EBOV GP pseudotyped virions to transduce human tumor cell lines that had previously been characterized by cDNA microarray. Transduction profiles for each of these cell lines were generated, and a significant positive correlation was observed between RhoC expression and permissivity for EBOV vector transduction. This correlation was not specific for EBOV vector alone as RhoC also correlated highly with transduction of vesicular stomatitis virus GP (VSVG) pseudotyped vector. Levels of RhoC protein in EBOV and VSV permissive and nonpermissive cells were consistent with the cDNA gene array findings. Additionally, vector transduction was elevated in cells that expressed high levels of endogenous RhoC but not RhoA. RhoB and RhoC overexpression significantly increased EBOV GP and VSVG pseudotyped vector transduction but had minimal effect on human immunodeficiency virus (HIV) GP pseudotyped HIV or adeno-associated virus 2 vector entry, indicating that not all virus uptake was enhanced by expression of these molecules. RhoB and RhoC overexpression also significantly enhanced VSV infection. Similarly, overexpression of RhoC led to a significant increase in fusion of EBOV virus-like particles. Finally, ectopic expression of RhoC resulted in increased nonspecific endocytosis of fluorescent dextran and in formation of increased actin stress fibers compared to RhoA-transfected cells, suggesting that RhoC is enhancing macropinocytosis. In total, our studies implicate RhoB and RhoC in enhanced productive entry of some pseudovirions and suggest the involvement of actin-mediated macropinocytosis as a mechanism of uptake of EBOV GP and VSVG pseudotyped viral particles.Enveloped viruses enter cells by a variety of different pathways. Productive internalization of enveloped viruses with targeted cells is mediated through interactions of the viral glycoprotein(s) (GPs) with moieties on the surface of the cell. In general, enveloped viral entry occurs through viral adherence to the cell surface, interaction with a specific plasma membrane-associated receptor that results in a series of GP conformational changes leading to fusion of viral and cellular membranes, and delivery of the viral core particle into the cytoplasm. Fusion of the two membranes can occur at the plasma membrane or by uptake of the intact virions into endosomes with subsequent membrane fusion between the viral membrane and the lipid bilayer of the endocytic vesicle. Human immunodeficiency virus (HIV) is an example of a virus that fuses directly to the plasma membrane (5), whereas influenza virus must be internalized into acidified vesicles where the appropriate GP conformational changes can occur, mediating membrane fusion (21). Most enveloped viruses that enter through vesicles utilize a low-pH environment to mediate the necessary conformational changes in GP that induce membrane fusion (37).Ebola virus (EBOV) and vesicular stomatitis virus (VSV) are enveloped, single-stranded, negative-sense RNA viruses belonging to the families Filoviridae and Rhabdoviridae, respectively. Though they share similarity in genome organization and a broad tropism for a variety of cell types, they differ greatly in their pathogenicities (29, 39). EBOV causes severe hemorrhagic fever that is frequently fatal, whereas VSV infects mainly livestock, generating fluid-filled vesicles on mucosal surfaces.Interestingly, the receptor(s) that mediate entry of these two viruses have yet to be definitively identified. C-type lectins such as DC-SIGN and DC-SIGNR are thought to serve as adherence factors for EBOV (26). Other plasma membrane-associated proteins have been implicated in EBOV uptake including folate receptor alpha and the tyrosine kinase receptor Axl (6, 35, 36, 38), but the physical interaction of EBOV GP and these proteins has not been demonstrated, and cells that do not express these proteins are permissive for EBOV GP-mediated virion uptake. VSV was shown to bind ubiquitously to cells via phosphatidylserine (PS) (31). However, a more recent study reports that PS is not a receptor for VSV as no correlation was found between cell surface PS levels and VSV infection, and annexin V, which binds specifically to PS, did not inhibit infection of VSV (9).Both viruses enter cells through a low-pH-dependent, endocytosis-mediated process. A large body of evidence indicates that VSV is internalized via clathrin-coated pits, with a reduction in pH mediating reversible alterations in the GP leading to membrane fusion (40). EBOV may also enter cells by clathrin-mediated endocytosis (30), but lipid raft-associated, caveolin-mediated endocytosis has also been proposed as a mechanism of EBOV uptake (11). Low-pH events lead to cathepsin-dependent cleavage of EBOV GP that is required for productive uptake of the virus (8, 19, 33). Other low-pH-dependent events have been postulated to be required as well (33).To identify genes whose expression correlated with EBOV GP-dependent transduction, we compared the relative transduction efficiency of EBOV GP pseudotyped virions on a panel of human tumor cell lines with gene expression data from cDNA microarrays developed for the same panel of cell lines (20). The gene array data are available from the Developmental Therapeutics Program at the National Cancer Institute (NCI) website (http://dtp.nci.nih.gov/). A significant correlation was observed between expression of RhoC, a member of the small GTP-binding Rho GTPase family, and permissivity for EBOV transduction. Surprisingly, a significant correlation was also observed between VSV glycoprotein (VSVG)-mediated transduction and RhoC expression. In this study, we report that modulation of RhoC expression by transfection of expression plasmids or treatment with an inhibitor alters transduction by virions pseudotyped with either EBOV GP or VSVG and fusion of EBOV virus-like particles (VLPs). RhoC expression also significantly enhanced wild-type VSV infection. We also examine the differential effect each Rho GTPase has on nonspecific endocytotic uptake of exogenous material and on organization of the actin filament. Our findings suggest that RhoC enhances entry of EBOV GP and VSVG pseudovirions through modulation of fluid-phase endocytosis.  相似文献   

7.
Phosphatidylserine (PtdSer) is transported from its site of synthesis in the endoplasmic reticulum to the locus of PtdSer decarboxylase 2 (Psd2p) in the Golgi/vacuole and decarboxylated to form phosphatidylethanolamine. Recent biochemical and genetic evidence has implicated the C2 domain of Psd2p and a membrane-bound form of the phosphatidylinositol binding/transfer protein, PstB2p, as essential for this transport process. We devised a reconstituted system in which chemically defined donor membranes function to transfer PtdSer to the biological acceptor membranes containing Psd2p. The transfer of PtdSer is poor when the donor membranes have a high degree of curvature but markedly enhanced when the membranes are relatively planar (> or =400-nm diameter). PtdSer transfer is also dependent upon both the bulk and the surface concentrations of the lipid, with pure PtdSer vesicles acting as the most efficient donors at all concentrations. The lipid transfer from donor membranes containing either 100% PtdSer or 50% PtdSer at a fixed concentration (e.g. 250 microM PtdSer) differs by a factor of 20. Surface dilution of PtdSer by choline, ethanolamine, glycerol, and inositol phospholipids markedly inhibits PtdSer transfer, whereas phosphatidic acid (PtdOH) stimulates the transfer. Most importantly, the transfer of PtdSer from liposomes to Psd2p fails to occur in acceptor membranes from strains lacking PstB2p or the C2 domain of Psd2p. These data support a model for PtdSer transport from planar domains highly enriched in PtdSer or in PtdSer plus PtdOH.  相似文献   

8.
We have deduced the disulfide bond linkage patterns, at very low protein levels (<0.5 nmol), in two cysteine-rich polypeptide domains using a new strategy involving partial reduction/alkylation of the protein, followed by peptide mapping and tanden mass spectrometry (MS/MS) sequencing on a nanoflow liquid chromatography-MS/MS system. The substrates for our work were the cysteine-rich ectodomain of human Fn14, a member of the tumor necrosis factor receptor family, and the IgV domain of murine TIM-1 (T-cell, Ig domain, and mucin domain-1). We have successfully determined the disulfide linkages for Fn14 and independently confirmed those of the IgV domain of TIM-1, whose crystal structure was published recently. The procedures that we describe here can be used to determine the disulfide structures for proteins with complex characteristics. They will also provide a means to obtain important information for structure-function studies and to ensure correct protein folding and batch-to-batch consistency in commercially produced recombinant proteins.  相似文献   

9.
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes.  相似文献   

10.
Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.  相似文献   

11.
Inducible costimulator (ICOS) ligand (ICOSL), a B7-related transmembrane glycoprotein with extracellular IgV and IgC domains, binds to ICOS on activated T cells and delivers a positive costimulatory signal for optimal T cell function. Toward determining the structural features of ICOSL crucial for its costimulatory function, the present study shows that ICOSL displays a marked oligomerization potential, resembling more like B7-1 than B7-2. Use of ICOSL constructs lacking either the IgC or IgV domain demonstrates that receptor binding is mediated solely by the IgV domain but requires the IgC domain for maintaining the structural integrity of the protein. To map further the receptor recognition surface on ICOSL, a homology-based protein structure model of the ICOS:ICOSL complex was constructed. Based on predictions from the model, a series of mutations were generated targeting the potential receptor binding surface on ICOSL, and the mutants were tested for their biological function in terms of ICOS binding and T cell costimulation ability. The results provide experimental validation of the model and show that the receptor binding site on ICOSL is constituted chiefly by aromatic/hydrophobic residues. Critical ICOSL residues essential for ICOS binding map to the GFCC'C' beta-sheet face of the IgV domain and approximately overlap with the B7-1/B7-2 motif(s) that recognize CD28/CTLA-4. Altogether, similar structural features of ICOSL and B7 isoforms suggest a close evolutionary relationship between these costimulatory ligands, yet differences at the same time explain their unique specificity for the cognate binding partners, ICOS and CD28/CTLA-4, respectively.  相似文献   

12.
Gammaretroviruses, including the subgroups A, B, and C of feline leukemia virus (FeLV), use a multiple-membrane-spanning transport protein as a receptor. In some cases, such as FeLV-T, a nonclassical receptor that includes both a transport protein (Pit1) and a soluble cofactor (FeLIX) is required for entry. To define which regions confer specificity to classical versus nonclassical receptor pathways, we engineered mutations found in either FeLV-A/T or FeLV-T, individually and in combination, into the backbone of the transmissible form of the virus, FeLV-A. The receptor specificities of these viruses were tested by measuring infection and binding to cells expressing the FeLV-A receptor or the FeLV-T receptors. FeLV-A receptor specificity was maintained when changes at amino acid position 6, 7, or 8 of the mature envelope glycoprotein were introduced, although differences in infection efficiency were observed. When these N-terminal mutations were introduced together with a C-terminal 4-amino-acid insertion and an adjacent amino acid change, the resulting viruses acquired FeLV-T receptor specificity. Additionally, a W-->L change at amino acid position 378, although not required, enhanced infectivity for some viruses. Thus, we have found that determinants in the N and C termini of the envelope surface unit can direct entry via the nonclassical FeLV-T receptor pathway. The region that has been defined as the receptor binding domain of gammaretroviral envelope proteins determined entry via the FeLV-A receptor independently of the presence of the N- and C-terminal FeLV-T receptor determinants.  相似文献   

13.
Ferritin binds specifically and saturably to a variety of cell types, and recently several ferritin receptors have been cloned. TIM-2 is a specific receptor for H ferritin (HFt) in the mouse. TIM-2 is a member of the T cell immunoglobulin and mucin domain containing (TIM) protein family and plays an important role in immunity. The expression of TIM-2 outside of the immune system indicates that this receptor may have broader roles. We tested whether ferritin binding to TIM-2 can serve as an iron delivery mechanism. TIM-2 was transfected into normal (TCMK-1) mouse kidney cells, where it was appropriately expressed on the cell surface. HFt was labeled with (55)Fe and (55)Fe-HFt was incubated with TIM-2 positive cells or controls. (55)Fe-HFt uptake was observed only in TIM-2 positive cells. HFt uptake was also seen in A20 B cells, which express endogenous TIM-2. TIM-2 levels were not increased by iron chelation. Uptake of (55)Fe-HFt was specific and temperature-dependent. HFt taken up by TIM-2 positive cells transited through the endosome and eventually entered a lysosomal compartment, distinguishing the HFt pathway from that of transferrin, the classical vehicle for cellular iron delivery. Iron delivered following binding of HFt to TIM-2 entered the cytosol and became metabolically available, resulting in increased levels of endogenous intracellular ferritin. We conclude that TIM-2 can function as an iron uptake pathway.  相似文献   

14.
Ebola virus (EBOV) and Marburg virus (MARV) belong to the family Filoviridae and cause severe hemorrhagic fever in humans and nonhuman primates. Despite the discovery of EBOV (Reston virus) in nonhuman primates and domestic pigs in the Philippines and the serological evidence for its infection of humans and fruit bats, information on the reservoirs and potential amplifying hosts for filoviruses in Asia is lacking. In this study, serum samples collected from 353 healthy Bornean orangutans (Pongo pygmaeus) in Kalimantan Island, Indonesia, during the period from December 2005 to December 2006 were screened for filovirus-specific IgG antibodies using a highly sensitive enzyme-linked immunosorbent assay (ELISA) with recombinant viral surface glycoprotein (GP) antigens derived from multiple species of filoviruses (5 EBOV and 1 MARV species). Here we show that 18.4% (65/353) and 1.7% (6/353) of the samples were seropositive for EBOV and MARV, respectively, with little cross-reactivity among EBOV and MARV antigens. In these positive samples, IgG antibodies to viral internal proteins were also detected by immunoblotting. Interestingly, while the specificity for Reston virus, which has been recognized as an Asian filovirus, was the highest in only 1.4% (5/353) of the serum samples, the majority of EBOV-positive sera showed specificity to Zaire, Sudan, Cote d'Ivoire, or Bundibugyo viruses, all of which have been found so far only in Africa. These results suggest the existence of multiple species of filoviruses or unknown filovirus-related viruses in Indonesia, some of which are serologically similar to African EBOVs, and transmission of the viruses from yet unidentified reservoir hosts into the orangutan populations. Our findings point to the need for risk assessment and continued surveillance of filovirus infection of human and nonhuman primates, as well as wild and domestic animals, in Asia.  相似文献   

15.
Ebola virus (EBOV) is a key member of Filoviridae family and causes severe human infectious diseases with high morbidity and mortality. As a typical negative-sense single-stranded RNA (-ssRNA) viruses, EBOV possess a nucleocapsid protein (NP) to facilitate genomic RNA encapsidation to form viral ribonucleoprotein complex (RNP) together with genome RNA and polymerase, which plays the most essential role in virus proliferation cycle. However, the mechanism of EBOV RNP formation remains unclear. In this work, we solved the high resolution structure of core domain of EBOV NP. The polypeptide of EBOV NP core domain (NPcore) possesses an N-lobe and C-lobe to clamp a RNA binding groove, presenting similarities with the structures of the other reported viral NPs encoded by the members from Mononegavirales order. Most strikingly, a hydrophobic pocket at the surface of the C-lobe is occupied by an α-helix of EBOV NPcore itself, which is highly conserved among filoviridae family. Combined with other biochemical and biophysical evidences, our results provides great potential for understanding the mechanism underlying EBOV RNP formation via the mobility of EBOV NP element and enables the development of antiviral therapies targeting EBOV RNP formation.  相似文献   

16.
The search for a safe and efficacious vaccine for Ebola virus continues, as no current vaccine candidate is nearing licensure. We have developed (i) replication-competent, (ii) replication-deficient, and (iii) chemically inactivated rabies virus (RABV) vaccines expressing Zaire Ebola virus (ZEBOV) glycoprotein (GP) by a reverse genetics system based on the SAD B19 RABV wildlife vaccine. ZEBOV GP is efficiently expressed by these vaccine candidates and is incorporated into virions. The vaccine candidates were avirulent after inoculation of adult mice, and viruses with a deletion in the RABV glycoprotein had greatly reduced neurovirulence after intracerebral inoculation in suckling mice. Immunization with live or inactivated RABV vaccines expressing ZEBOV GP induced humoral immunity against each virus and conferred protection from both lethal RABV and EBOV challenge in mice. The bivalent RABV/ZEBOV vaccines described here have several distinct advantages that may speed the development of inactivated vaccines for use in humans and potentially live or inactivated vaccines for use in nonhuman primates at risk of EBOV infection in endemic areas.  相似文献   

17.
Ebola virus (EBOV) infections are characterized by deficient T lymphocyte responses, T lymphocyte apoptosis, and lymphopenia in the absence of direct infection of T lymphocytes. In contrast, dendritic cells (DC) are infected but fail to mature appropriately, thereby impairing the T cell response. We investigated the contributions of EBOV proteins in modulating DC maturation by generating recombinant viruses expressing enhanced green fluorescent protein and carrying mutations affecting several potentially immunomodulating domains. They included envelope glycoprotein (GP) domains, as well as innate response antagonist domains (IRADs) previously identified in the VP24 and VP35 proteins. GP expressed by an unrelated vector, but not the wild-type EBOV, was found to strongly induce DC maturation, and infections with recombinant EBOV carrying mutations disabling GP functional domains did not restore DC maturation. In contrast, each of the viruses carrying mutations disabling any IRAD in VP35 induced a dramatic upregulation of DC maturation markers. This was dependent on infection, but not interaction with GP. Disabling of IRADs also resulted in up to a several hundredfold increase in secretion of cytokines and chemokines. Furthermore, these mutations induced formation of homotypic DC clusters, which represent close correlates of their maturation and presumably facilitate transfer of antigen from migratory DC to lymph node DC. Thus, an individual IRAD is insufficient to suppress DC maturation; rather, the suppression of DC maturation and the “immune paralysis” observed during EBOV infections results from a cooperative effect of two or more individual IRADs.  相似文献   

18.
Cellular entry of Ebola virus (EBOV), a deadly hemorrhagic fever virus, is mediated by the viral glycoprotein (GP). The receptor-binding subunit of GP must be cleaved (by endosomal cathepsins) in order for entry and infection to proceed. Cleavage appears to proceed through 50-kDa and 20-kDa intermediates, ultimately generating a key 19-kDa core. How 19-kDa GP is subsequently triggered to bind membranes and induce fusion remains a mystery. Here we show that 50-kDa GP cannot be triggered to bind to liposomes in response to elevated temperature but that 20-kDa and 19-kDa GP can. Importantly, 19-kDa GP can be triggered at temperatures ~10°C lower than 20-kDa GP, suggesting that it is the most fusion ready form. Triggering by heat (or urea) occurs only at pH 5, not pH 7.5, and involves the fusion loop, as a fusion loop mutant is defective in liposome binding. We further show that mild reduction (preferentially at low pH) triggers 19-kDa GP to bind to liposomes, with the wild-type protein being triggered to a greater extent than the fusion loop mutant. Moreover, mild reduction inactivates pseudovirion infection, suggesting that reduction can also trigger 19-kDa GP on virus particles. Our results support the hypothesis that priming of EBOV GP, specifically to the 19-kDa core, potentiates GP to undergo subsequent fusion-relevant conformational changes. Our findings also indicate that low pH and an additional endosomal factor (possibly reduction or possibly a process mimicked by reduction) act as fusion triggers.  相似文献   

19.
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever—a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit—a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.  相似文献   

20.
Using isogenic recombinant murine coronaviruses expressing wild-type murine hepatitis virus strain 4 (MHV-4) or MHV-A59 spike glycoproteins or chimeric MHV-4/MHV-A59 spike glycoproteins, we have demonstrated the biological functionality of the N-terminus of the spike, encompassing the receptor binding domain (RBD). We have used two assays, one an in vitro liposome binding assay and the other a tissue culture replication assay. The liposome binding assay shows that interaction of the receptor with spikes on virions at 37 degrees C causes a conformational change that makes the virions hydrophobic so that they bind to liposomes (B. D. Zelus, J. H. Schickli, D. M. Blau, S. R. Weiss, and K. V. Holmes, J. Virol. 77: 830-840, 2003). Recombinant viruses with spikes containing the RBD of either MHV-A59 or MHV-4 readily associated with liposomes at 37 degrees C in the presence of soluble mCEACAM1(a), except for S(4)R, which expresses the entire wild-type MHV-4 spike and associated only inefficiently with liposomes following incubation with soluble mCEACAM1(a). In contrast, soluble mCEACAM1(b) allowed viruses with the MHV-A59 RBD to associate with liposomes more efficiently than did viruses with the MHV-4 RBD. In the second assay, which requires virus entry and replication, all recombinant viruses replicated efficiently in BHK cells expressing mCEACAM1(a). In BHK cells expressing mCEACAM1(b), only viruses expressing chimeric spikes with the MHV-A59 RBD could replicate, while replication of viruses expressing chimeric spikes with the MHV-4 RBD was undetectable. Despite having the MHV-4 RBD, S(4)R replicated in BHK cells expressing mCEACAM1(b); this is most probably due to spread via CEACAM1 receptor-independent cell-to-cell fusion, an activity displayed only by S(4)R among the recombinant viruses studied here. These data suggest that the RBD domain and the rest of the spike must coevolve to optimize function in viral entry and spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号