首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Francisella tularensis is the causative agent of tularemia and is classified as a Category A select agent. Recent studies have implicated TLR2 as a critical element in the host protective response to F. tularensis infection, but questions remain about whether TLR2 signaling dominates the response in all circumstances and with all species of Francisella and whether F. tularensis PAMPs are predominantly recognized by TLR2/TLR1 or TLR2/TLR6. To address these questions, we have explored the role of Toll-like receptors (TLRs) in the host response to infections with F. tularensis Live Vaccine Strain (LVS) and F. tularensis subspecies (subsp.) novicida in vivo.

Methodology/Principal Findings

C57BL/6 (B6) control mice and TLR– or MyD88-deficient mice were infected intranasally (i.n.) or intradermally (i.d.) with F. tularensis LVS or with F. tularensis subsp. novicida. B6 mice survived >21 days following infection with LVS by both routes and survival of TLR1−/−, TLR4−/−, and TLR6−/− mice infected i.n. with LVS was equivalent to controls. Survival of TLR2−/− and MyD88−/− mice, however, was significantly reduced compared to B6 mice, regardless of the route of infection or the subspecies of F. tularensis. TLR2−/− and MyD88−/− mice also showed increased bacterial burdens in lungs, liver, and spleen compared to controls following i.n. infection. Primary macrophages from MyD88−/− and TLR2−/− mice were significantly impaired in the ability to secrete TNF and other pro-inflammatory cytokines upon ex vivo infection with LVS. TNF expression was also impaired in vivo as demonstrated by analysis of bronchoalveolar lavage fluid and by in situ immunofluorescent staining.

Conclusions/Significance

We conclude from these studies that TLR2 and MyD88, but not TLR4, play critical roles in the innate immune response to F. tularensis infection regardless of the route of infection or the subspecies. Moreover, signaling through TLR2 does not depend exclusively on TLR1 or TLR6 during F. tularensis LVS infection.  相似文献   

2.

Background

Paracoccin (PCN) is an N-acetylglucosamine-binding lectin from the human pathogenic fungus Paracoccidioides brasiliensis. Recombinant PCN (rPCN) induces a T helper (Th) 1 immune response when prophylactically administered to BALB/c mice, protecting them against subsequent challenge with P. brasiliensis. In this study, we investigated the therapeutic effect of rPCN in experimental paracoccidioidomycosis (PCM) and the mechanism accounting for its beneficial action.

Methodology/Principal Findings

Four distinct regimens of rPCN administration were assayed to identify which was the most protective, relative to vehicle administration. In all rPCN-treated mice, pulmonary granulomas were less numerous and more compact. Moreover, fewer colony-forming units were recovered from the lungs of rPCN-treated mice. Although all therapeutic regimens of rPCN were protective, maximal efficacy was obtained with two subcutaneous injections of 0.5 µg rPCN at 3 and 10 days after infection. The rPCN treatment was also associated with higher pulmonary levels of IL-12, IFN-γ, TNF-α, nitric oxide (NO), and IL-10, without IL-4 augmentation. Encouraged by the pulmonary cytokine profile of treated mice and by the fact that in vitro rPCN-stimulated macrophages released high levels of IL-12, we investigated the interaction of rPCN with Toll-like receptors (TLRs). Using a reporter assay in transfected HEK293T cells, we verified that rPCN activated TLR2 and TLR4. The activation occurred independently of TLR2 heterodimerization with TLR1 or TLR6 and did not require the presence of the CD14 or CD36 co-receptors. The interaction between rPCN and TLR2 depended on carbohydrate recognition because it was affected by mutation of the receptor''s N-glycosylation sites. The fourth TLR2 N-glycan was especially critical for the rPCN-TLR2 interaction.

Conclusions/Significance

Based on our results, we propose that PCN acts as a TLR agonist. PCN binds to N-glycans on TLRs, triggers regulated Th1 immunity, and exerts a therapeutic effect against P. brasiliensis infection.  相似文献   

3.

Background

Toll like receptors (TLRs) sense the intestinal microbiota and regulate the innate immune response. A dysregulation of TLRs function participates into intestinal inflammation. Farnesoid X Receptor (FXR) is a nuclear receptor and bile acid sensor highly expressed in entero-hepatic tissues. FXR regulates lipid metabolism and innate immunity.

Methodology/Principal Findings

In this study we have investigated whether FXR gene expression/function in the intestine is modulated by TLRs. We found that in human monocytes activation of membrane TLRs (i.e. TLR2, 4, 5 and 6) downregulates, while activation of intracellular TLRs (i.e. TLR3, 7, 8 and 9) upregulates the expression of FXR and its target gene SHP, small heterodimer partner. This effect was TLR9-dependent and TNFα independent. Intestinal inflammation induced in mice by TNBS downregulates the intestinal expression of FXR in a TLR9-dependent manner. Protection against TNBS colitis by CpG, a TLR-9 ligand, was lost in FXR−/− mice. In contrast, activation of FXR rescued TLR9−/− and MyD88−/− mice from colitis. A putative IRF7 response element was detected in the FXR promoter and its functional characterization revealed that IRF7 is recruited on the FXR promoter under TLR9 stimulation.

Conclusions/Significance

Intestinal expression of FXR is selectively modulated by TLR9. In addition to its role in regulating type-I interferons and innate antiviral immunity, IRF-7 a TLR9-dependent factor, regulates the expression of FXR, linking microbiota-sensing receptors to host''s immune and metabolic signaling.  相似文献   

4.

Background

Cellular immunity is the main defense mechanism in paracoccidioidomycosis (PCM), the most important systemic mycosis in Latin America. Th1 immunity and IFN-γ activated macrophages are fundamental to immunoprotection that is antagonized by IL-10, an anti-inflammatory cytokine. Both in human and experimental PCM, several evidences indicate that the suppressive effect of IL-10 causes detrimental effects to infected hosts. Because direct studies have not been performed, this study was aimed to characterize the function of IL-10 in pulmonary PCM.

Methodology/Principal Findings

Wild type (WT) and IL-10−/− C57BL/6 mice were used to characterize the role of IL-10 in the innate and adaptive immunity against Paracoccidioides brasiliensis (Pb) infection. We verified that Pb-infected peritoneal macrophages from IL-10−/− mice presented higher phagocytic and fungicidal activities than WT macrophages, and these activities were associated with elevated production of IFN-γ, TNF-α, nitric oxide (NO) and MCP-1. For in vivo studies, IL-10−/− and WT mice were i.t. infected with 1×106 Pb yeasts and studied at several post-infection periods. Compared to WT mice, IL-10−/− mice showed increased resistance to P. brasiliensis infection as determined by the progressive control of pulmonary fungal loads and total clearance of fungal cells from dissemination organs. This behavior was accompanied by enhanced delayed-type hypersensitivity reactions, precocious humoral immunity and controlled tissue pathology resulting in increased survival times. In addition, IL-10−/− mice developed precocious T cell immunity mediated by increased numbers of lung infiltrating effector/memory CD4+ and CD8+ T cells. The inflammatory reactions and the production of Th1/Th2/Th17 cytokines were reduced at late phases of infection, paralleling the regressive infection of IL-10−/− mice.

Conclusions/Significance

Our work demonstrates for the first time that IL-10 plays a detrimental effect to pulmonary PCM due to its suppressive effect on the innate and adaptive immunity resulting in progressive infection and precocious mortality of infected hosts.  相似文献   

5.

Background

Telomeres are essential to maintain chromosomal stability. Cells derived from mice lacking telomerase RNA component (mTERC−/− mice) display elevated telomere-mediated chromosome instability. Age-dependent telomere shortening and associated chromosome instability reduce the capacity to respond to cellular stress occurring during inflammation and cancer. Inflammation is one of the important risk factors in cancer progression. Controlled innate immune responses mediated by Toll-like receptors (TLR) are required for host defense against infection. Our aim was to understand the role of chromosome/genome instability in the initiation and maintenance of inflammation.

Methodology/Principal Findings

We examined the function of TLR4 in telomerase deficient mTERC−/− mice harbouring chromosome instability which did not develop any overt immunological disorder in pathogen-free condition or any form of cancers at this stage. Chromosome instability was measured in metaphase spreads prepared from wildtype (mTERC+/+), mTERC+/− and mTERC−/− mouse splenocytes. Peritoneal and/or bone marrow-derived macrophages were used to examine the responses of TLR4 by their ability to produce inflammatory mediators TNFα and IL6. Our results demonstrate that TLR4 is highly up-regulated in the immune cells derived from telomerase-null (mTERC−/−) mice and lipopolysaccharide, a natural ligand for TLR4 stabilises NF-κB binding to its promoter by down-regulating ATF-3 in mTERC−/− macrophages.

Conclusions/Significance

Our findings implied that background chromosome instability in the cellular level stabilises the action of TLR4-induced NF-κB action and sensitises cells to produce excess pro-inflammatory mediators. Chromosome/genomic instability data raises optimism for controlling inflammation by non-toxic TLR antagonists among high-risk groups.  相似文献   

6.

Background

Ascending infections of the female genital tract with bacteria causes pelvic inflammatory disease (PID), preterm labour and infertility. Lipopolysaccharide (LPS) is the main component of the cell wall of Gram-negative bacteria. Innate immunity relies on the detection of LPS by Toll-like receptor 4 (TLR4) on host cells. Binding of LPS to TLR4 on immune cells stimulates secretion of pro-inflammatory cytokines such as IL-6, chemokines such as CXCL1 and CCL20, and prostaglandin E2. The present study tested the hypothesis that TLR4 on endometrial epithelial and stromal cells is essential for the innate immune response to LPS in the female genital tract.

Methodology/Principal Findings

Wild type (WT) mice expressed TLR4 in the endometrium. Intrauterine infusion of purified LPS caused pelvic inflammatory disease, with accumulation of granulocytes throughout the endometrium of WT but not Tlr4−/− mice. Intra-peritoneal infusion of LPS did not cause PID in WT or Tlr4−/− mice, indicating the importance of TLR4 in the endometrium for the detection of LPS in the female genital tract. Stromal and epithelial cells isolated from the endometrium of WT but not Tlr4−/− mice, secreted IL-6, CXCL1, CCL20 and prostaglandin E2 in response to LPS, in a concentration and time dependent manner. Co-culture of combinations of stromal and epithelial cells from WT and Tlr4−/− mice provided little evidence of stromal-epithelial interactions in the response to LPS.

Conclusions/Significance

The innate immune response to LPS in the female genital tract is dependent on TLR4 on the epithelial and stromal cells of the endometrium.  相似文献   

7.
8.

Background

Nitric oxide (NO), a key antimicrobial molecule, was previously shown to exert a dual role in paracoccidioidomycosis, an endemic fungal infection in Latin America. In the intravenous and peritoneal models of infection, NO production was associated with efficient fungal clearance but also with non-organized granulomatous lesions. Because paracoccidioidomycosis is a pulmonary infection, we aimed to characterize the role of NO in a pulmonary model of infection.

Methodology/Principal Findings

C57Bl/6 wild type (WT) and iNOS−/− mice were i.t. infected with 1×106 Paracoccidioides brasiliensis yeasts and studied at several post-infection periods. Unexpectedly, at week 2 of infection, iNOS−/− mice showed decreased pulmonary fungal burdens associated with an M2-like macrophage profile, which expressed high levels of TGF-β impaired ability of ingesting fungal cells. This early decreased fungal loads were concomitant with increased DTH reactions, enhanced TNF-α synthesis and intense migration of activated macrophages, CD4+ and CD8+ T cells into the lungs. By week 10, iNOS−/− mice showed increased fungal burdens circumscribed, however, by compact granulomas containing elevated numbers of activated CD4+ T cells. Importantly, the enhanced immunological reactivity of iNOS−/− mice resulted in decreased mortality rates. In both mouse strains, depletion of TNF-α led to non-organized lesions and excessive influx of inflammatory cells into the lungs, but only the iNOS−/− mice showed increased mortality rates. In addition, depletion of CD8+ cells abolished the increased migration of inflammatory cells and decreased the number of TNF-α and IFN-γ CD4+ and CD8+ T cells into the lungs of iNOS−/− mice.

Conclusions/Significance

Our study demonstrated that NO plays a deleterious role in pulmonary paracoccidioidomycosis due to its suppressive action on TNF-α production, T cell immunity and organization of lesions resulting in precocious mortality of mice. It was also revealed that uncontrolled fungal growth can be overcome by an efficient immune response.  相似文献   

9.

Background

Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha’-palmitate), the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate), the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha’-palmitate fat (HAPF) diet and high beta-palmitate fat (HBPF) diet on colitis development in Muc2 deficient (Muc2−/−) mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer.

Methods

Muc2−/− mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed.

Results

Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2−/− mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg) cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1), genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis.

Conclusions

This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2−/− mice by inducing an immunosuppressive Treg cell response.  相似文献   

10.
11.

Background

Astroglial cells are activated following injury and up-regulate the expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. Adult mice lacking the intermediate filament proteins GFAP and vimentin (GFAP−/−Vim−/−) show attenuated reactive gliosis, reduced glial scar formation and improved regeneration of neuronal synapses after neurotrauma. GFAP−/−Vim−/− mice exhibit larger brain infarcts after middle cerebral artery occlusion suggesting protective role of reactive gliosis after adult focal brain ischemia. However, the role of astrocyte activation and reactive gliosis in the injured developing brain is unknown.

Methodology/Principal Findings

We subjected GFAP−/−Vim−/− and wild-type mice to unilateral hypoxia-ischemia (HI) at postnatal day 9 (P9). Bromodeoxyuridine (BrdU; 25 mg/kg) was injected intraperitoneally twice daily from P9 to P12. On P12 and P31, the animals were perfused intracardially. Immunohistochemistry with MAP-2, BrdU, NeuN, and S100 antibodies was performed on coronal sections. We found no difference in the hemisphere or infarct volume between GFAP−/−Vim−/− and wild-type mice at P12 and P31, i.e. 3 and 22 days after HI. At P31, the number of NeuN+ neurons in the ischemic and contralateral hemisphere was comparable between GFAP−/−Vim−/− and wild-type mice. In wild-type mice, the number of S100+ astrocytes was lower in the ipsilateral compared to contralateral hemisphere (65.0±50.1 vs. 85.6±34.0, p<0.05). In the GFAP−/−Vim−/− mice, the number of S100+ astrocytes did not differ between the ischemic and contralateral hemisphere at P31. At P31, GFAP−/−Vim−/− mice showed an increase in NeuN+BrdU+ (surviving newly born) neurons in the ischemic cortex compared to wild-type mice (6.7±7.7; n = 29 versus 2.9±3.6; n = 28, respectively, p<0.05), but a comparable number of S100+BrdU+ (surviving newly born) astrocytes.

Conclusions/Significance

Our results suggest that attenuation of reactive gliosis in the developing brain does not affect the hemisphere or infarct volume after HI, but increases the number of surviving newborn neurons.  相似文献   

12.

Background

The human lung is exposed to a large number of airborne pathogens as a result of the daily inhalation of 10,000 liters of air. Innate immunity is thus essential to defend the lungs against these pathogens. This defense is mediated in part through the recognition of specific microbial ligands by Toll-like receptors (TLR) of which there are at least 10 in humans. Pseudomonas aeruginosa is the main pathogen that infects the lungs of cystic fibrosis patients. Based on whole animal experiments, using TLR knockout mice, the control of this bacterium is believed to occur by the recognition of LPS and flagellin by TLRs 2,4 and 5, respectively.

Methodology/Principal Findings

In the present study, we investigated in vitro the role of these same TLR and ligands, in alveolar macrophage (AM) and epithelial cell (EC) activation. Cellular responses to P. aeruginosa was evaluated by measuring KC, TNF-α, IL-6 and G-CSF secretion, four different markers of the innate immune response. AM and EC from WT and TLR2, 4, 5 and MyD88 knockout mice for were stimulated with the wild-type P. aeruginosa or with a mutant devoid of flagellin production.

Conclusions/Significance

The results clearly demonstrate that only two ligand/receptor pairs are necessary for the induction of KC, TNF-α, and IL-6 synthesis by P. aeruginosa-activated cells, i.e. TLR2,4/LPS and TLR5/flagellin. Either ligand/receptor pair is sufficient to sense the bacterium and to trigger cell activation, and when both are missing lung EC and AM are unable to produce such a response as were cells from MyD88−/− mice.  相似文献   

13.

Background

Although it is established that opioid and Mycobacterium tuberculosis are both public health problems, the mechanisms by which they affect lung functions remain elusive.

Methodology/Principal Findings

We report here that mice subjected to chronic morphine administration and M. tuberculosis infection exhibited significant apoptosis in the lung in wild type mice as demonstrated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. Morphine and M. tuberculosis significantly induced the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, deficiency in TLR9 significantly inhibited the morphine and M. tuberculosis induced apoptosis in the lung. In addition, chronic morphine treatment and M. tuberculosis infection enhanced the levels of cytokines (TNF-α, IL-1β, and IL-6) in wild type mice, but not in TLR9 knockout (KO) mice. The bacterial load was much lower in TLR9 KO mice compared with that in wild type mice following morphine and M. tuberculosis treatment. Morphine alone did not alter the bacterial load in either wild type or TLR9 KO mice. Moreover, administration of morphine and M. tuberculosis decreased the levels of phosphorylation of Akt and GSK3β in the wild type mice, but not in TLR9 KO mice, suggesting an involvement of Akt/GSK3β in morphine and M. tuberculosis-mediated TLR9 signaling. Furthermore, administration of morphine and M. tuberculosis caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type mice, but not in TLR9 KO mice, indicating a role of Bcl-2 family in TLR9-mediated apoptosis in the lung following morphine and M. tuberculosis administration.

Conclusions/Significance

These data reveal a role for TLR9 in the immune response to opioids during M. tuberculosis infection.  相似文献   

14.

Aim

Several recent reports have revealed that dipeptidyl peptidase (DPP)-4 inhibitors have suppressive effects on atherosclerosis in apolipoprotein E-null (Apoe −/−) mice. It remains to be seen, however, whether this effect stems from increased levels of the two active incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP).

Methods

Nontreated Apoe −/− mice, streptozotocin-induced diabetic Apoe −/− mice, and db/db diabetic mice were administered the DPP-4 inhibitor vildagliptin in drinking water and co-infused with either saline, the GLP-1 receptor blocker, exendin(9–39), the GIP receptor blocker, (Pro3)GIP, or both via osmotic minipumps for 4 weeks. Aortic atherosclerosis and oxidized low-density lipoprotein-induced foam cell formation in exudate peritoneal macrophages were determined.

Results

Vildagliptin increased plasma GLP-1 and GIP levels without affecting food intake, body weight, blood pressure, or plasma lipid profile in any of the animals tested, though it reduced HbA1c in the diabetic mice. Diabetic Apoe −/− mice exhibited further-progressed atherosclerotic lesions and foam cell formation compared with nondiabetic counterparts. Nondiabetic and diabetic Apoe −/− mice showed a comparable response to vildagliptin, namely, remarkable suppression of atherosclerotic lesions with macrophage accumulation and foam cell formation in peritoneal macrophages. Exendin(9–39) or (Pro3)GIP partially attenuated the vildagliptin-induced suppression of atherosclerosis. The two blockers in combination abolished the anti-atherosclerotic effect of vildagliptin in nondiabetic mice but only partly attenuated it in diabetic mice. Vildagliptin suppressed macrophage foam cell formation in nondiabetic and diabetic mice, and this suppressive effect was abolished by infusions with exendin(9–39)+(Pro3)GIP. Incubation of DPP-4 or vildagliptin in vitro had no effect on macrophage foam cell formation.

Conclusions

Vildagliptin confers a substantial anti-atherosclerotic effect in both nondiabetic and diabetic mice, mainly via the action of the two incretins. However, the partial attenuation of atherosclerotic lesions by the dual incretin receptor antagonists in diabetic mice implies that vildagliptin confers a partial anti-atherogenic effect beyond that from the incretins.  相似文献   

15.

Background

The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh−/− mice to oxidative stress.

Methodology/Principal Findings

The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS). The Mutyh−/− phenotpe was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh−/− mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh−/− mice. Lymphoid hyperplasia and a significant reduction in Foxp3+ regulatory T cells were observed only in Mutyh−/− mice.

Conclusions

The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.  相似文献   

16.

Background

RP105 (CD180) is TLR4 homologue lacking the intracellular TLR4 signaling domain and acts a TLR accessory molecule and physiological inhibitor of TLR4-signaling. The role of RP105 in vascular remodeling, in particular post-interventional remodeling is unknown.

Methods and Results

TLR4 and RP105 are expressed on vascular smooth muscle cells (VSMC) as well as in the media of murine femoral artery segments as detected by qPCR and immunohistochemistry. Furthermore, the response to the TLR4 ligand LPS was stronger in VSMC from RP105−/− mice resulting in a higher proliferation rate. In RP105−/− mice femoral artery cuff placement resulted in an increase in neointima formation as compared to WT mice (4982±974 µm2 vs.1947±278 µm2,p = 0.0014). Local LPS application augmented neointima formation in both groups, but in RP105−/− mice this effect was more pronounced (10316±1243 µm2 vs.4208±555 µm2,p = 0.0002), suggesting a functional role for RP105. For additional functional studies, the extracellular domain of murine RP105 was expressed with or without its adaptor protein MD1 and purified. SEC-MALSanalysis showed a functional 2∶2 homodimer formation of the RP105-MD1 complex. This protein complex was able to block the TLR4 response in whole blood ex-vivo. In vivo gene transfer of plasmid vectors encoding the extracellular part of RP105 and its adaptor protein MD1 were performed to initiate a stable endogenous soluble protein production. Expression of soluble RP105-MD1 resulted in a significant reduction in neointima formation in hypercholesterolemic mice (2500±573 vs.6581±1894 µm2,p<0.05), whereas expression of the single factors RP105 or MD1 had no effect.

Conclusion

RP105 is a potent inhibitor of post-interventional neointima formation.  相似文献   

17.

Background

Infant crying is an important cue for mothers to respond adequately. Inappropriate response to infant crying can hinder social development in infants. In rodents, the pup-mother interaction largely depends on pup''s calls. Mouse pups emit high frequency to ultrasonic vocalization (2–90 kHz) to communicate with their dam for maternal care. However, little is known about how the maternal response to infant crying or pup calls affects social development over the long term.

Methodology/Principal Findings

Here we used mice lacking acid-sensing ion channel 3 (Asic3−/−) to create a hearing deficit to probe the effect of caregiver hearing on maternal care and adolescent social development. Female Asic3−/− mice showed elevated hearing thresholds for low to ultrasonic frequency (4–32 kHz) on auditory brain stem response, which thus hindered their response to their pups'' wriggling calls and ultrasonic vocalization, as well as their retrieval of pups. In adolescence, pups reared by Asic3−/− mice showed a social deficit in juvenile social behaviors as compared with those reared by wild-type or heterozygous dams. The social-deficit phenotype in juvenile mice reared by Asic3−/− mice was associated with the reduced serotonin transmission of the brain. However, Asic3−/− pups cross-fostered to wild-type dams showed rescued social deficit.

Conclusions/Significance

Inadequate response to pups'' calls as a result of ASIC3-dependent hearing loss confers maternal deficits in caregivers and social development deficits in their young.  相似文献   

18.
In this study, B cell function in protective TH2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Rα and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Rα−/− mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Rα expressing B cells into naïve BALB/c mice, but not IL-4Rα or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4+ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88−/− B cells. These data suggest TLR dependent antigen processing by IL-4Rα-responsive B cells producing IL-13 contribute significantly to CD4+ T cell-mediated protective immunity against N. brasiliensis infection.  相似文献   

19.

Background

Small heterodimer partner (SHP, NR0B2) is involved in diverse metabolic pathways, including hepatic bile acid, lipid and glucose homeostasis, and has been implicated in effects on the peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and the receptor for antidiabetic drugs thiazolidinediones (TZDs). In this study, we aim to investigate the role of SHP in TZD response by comparing TZD-treated leptin-deficient (ob/ob) and leptin-, SHP-deficient (ob/ob;Shp−/−) double mutant mice.

Results

Both ob/ob and double mutant ob/ob;Shp−/− mice developed hyperglycemia, insulin resistance, and hyperlipidemia, but hepatic fat accumulation was decreased in the double mutant ob/ob;Shp−/− mice. PPARγ2 mRNA levels were markedly lower in ob/ob;Shp−/− liver and decreased to a lesser extent in adipose tissue. The TZD troglitazone did not reduce glucose or circulating triglyceride levels in ob/ob;Shp−/− mice. Expression of the adipocytokines, such as adiponectin and resistin, was not stimulated by troglitazone treatment. Expression of hepatic lipogenic genes was also reduced in ob/ob;Shp−/− mice. Moreover, overexpression of SHP by adenovirus infection increased PPARγ2 mRNA levels in mouse primary hepatocytes.

Conclusions

Our results suggest that SHP is required for both antidiabetic and hypolipidemic effects of TZDs in ob/ob mice through regulation of PPARγ expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号