首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypothetically, a species with both cleistogamous (CL) flowers and delayed selfing chasmogamous (CH) flowers should display high levels of reproductive assurance because, over time, obligate selfing by CL flowers should reduce inbreeding depression and delayed selfing in CH flowers should compensate for the absence of outcross pollen. We used pollinator-exclusion experiments to investigate reproductive assurance in the CH flowers of Polygala lewtonii, an herb with a mixed mating system. We followed CH flowers from bud-break to flower/fruit abscission to quantify fruit initiation and maturation and rates of floral development. We also evaluated the efficacy of the selfing mechanism, conducted pollinator watches to assess the likelihood of pollinator limitation, and performed regression analysis to determine the effect of flower position on fruit production. Pollinator exclusion significantly reduced fruit initiation and maturation. Investigation of floral development demonstrated that the selfing mechanism is largely dysfunctional in CH flowers, indicating the failure of reproductive assurance. Low observed rates of insect visitation appear to contradict high rates of CH fruit production in open-pollinated plants, particularly given the rarity of delayed selfing. In both treatments, flower position significantly affected fruit initiation, suggesting a role for resource limitation in both pollinator-excluded and open-pollinated flowers.  相似文献   

2.
一些研究显示盗蜜对自交植物的结实和结籽没有显著影响。然而, 对于既有传粉者为其传粉实现异交又能通过自交实现生殖保障的兼性自交植物来说, 盗蜜对其生殖的影响还知之甚少。由于兼性自交植物可以自交, 盗蜜对其总体结实可能不会有显著影响, 但可能会通过影响传粉者行为而影响传粉者介导的结实。为了验证这一假说, 本研究以兼性自交的一年生角蒿(Invarvillea sinensis var. sinensis)为研究材料, 通过野外调查和控制实验, 探讨了盗蜜对传粉者介导的结实(传粉者行为)和总体结实率的影响。结果表明: 角蒿的盗蜜者和主要传粉者相同, 均为密林熊蜂(Bombus patagiatus)。熊蜂盗蜜频率平均为20.24% (范围为0-51.43%)。盗蜜对角蒿总体结实率、每果结籽数和每果种子重量没有显著影响。然而, 被盗蜜花的柱头闭合比率显著高于未被盗蜜花, 说明盗蜜影响传粉者的访花行为和传粉者介导的结实率。另外, 被盗蜜花的高度显著高于未被盗蜜花, 说明盗蜜者倾向于从较大较高的花上盗蜜。这些结果为全面认识盗蜜对植物生殖的影响提供了新的信息。  相似文献   

3.
The production of both potentially outcrossed (chasmogamous) and obligately self-fertilized (cleistogamous) flowers presents a clear exception to the prediction that the only evolutionarily stable mating systems are complete selfing and complete outcrossing. Although cleistogamy has evolved repeatedly, the reason for its stability is not known for any species. We tested the hypothesis that the production of cleistogamous and chasmogamous flowers by a perennial violet constitutes adaptive phenotypic plasticity. We manipulated the season of flowering for each flower type and determined fruit set and the germination percentage of seeds produced by cleistogamous and chasmogamous flowers to test the hypothesis that adaptive plastic response to seasonal environmental variation makes mixed mating stable. Cleistogamous flowers had greater fruit set in all seasons and produced seeds with germination percentages as great as or greater than those from chasmogamous flowers. The consistent advantage of cleistogamous flowers is clearly not consistent with a role of adaptive plastic response to seasonal variation. The biomass cost of seed production by chasmogamous flowers was nearly three times that for cleistogamous flowers. Explaining why chasmogamous flower have not been eliminated by natural selection requires that this difference be balanced by an advantage to chasmogamous flowers that has not yet been identified.  相似文献   

4.
Cleistogamy (self-fertilization in closed flowers) differs from chasmogamy (open-pollinated fertilization) mainly in sustaining selfing. Why numerous species develop both of the reproductive modes on the same individuals has long puzzled biologists. In a novel hypothesis presented here, I propose that cleistogamy could be a means by which inbred lines are created and maintained in natural populations; these lines would continuously experience self-improvement via natural selection and via crosses among lines at the chasmogamous flowers to benefit the populations. Supporting evidence for the hypothesis was found in Impatiens capensis where cleistogamous ovules were fertilized proportionately less (56%) than chasmogamous ovules (67%) in natural populations, but crosses among cleistogamous progeny in the greenhouse led to a nearly 10% increase of fertilized chasmogamous ovules. I established a novel fitness model specific to the cleistogamous species to further examine how various aspects of the mating system affect plant performance. A low inbreeding depression (0.07) was consequently found for the surveyed natural populations of I. capensis , suggesting that the individual-level percentage of cleistogamy and the population-level selfing rate may have evolved in the direction of reducing the overall inbreeding depression. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 543–553.  相似文献   

5.
The selection of cleistogamy and heteromorphic diaspores   总被引:4,自引:0,他引:4  
Models for the evolution of a mixture of cleistogamous (closed, autogamous) flowers and chasmogamous (open) flowers are described. The 'basic' model takes into account features associated with cleistogamous self-pollination, including the greater economy and certainty of cleistogamous fertilization and the inability of cleistogamous flowers to contribute pollen to the outcrossed pollen pool. Complete cleistogamous selfing is favoured when allocation to maternal function, fertilization rate, and viability of progeny are sufficiently greater for the cleistogamous component, and when the resources spent on ancillary structures in cleistogamous flowers, cleistogamous seed costs, and inbreeding depression are low. The result is discussed with respect to the cost of sex argument and relevant ecological data. Suggestions for the apparent rarity of cleistogamy are presented. The 'complex habitat' model extends the basic model to situations in which the success of reproduction by cleistogamy or chasmogamy varies according to the environment of the parent. In this situation, reproduction by both cleistogamy and chasomogamy is sometimes selected. A 'near and far dispersal' model addresses the question of the evolution of dual modes of dispersal, which occur in some cleistogamous and non-cleistogamous plants. A dual mode of dispersal may evolve if a narrowly dispersed seed type is more successful in establishing at the sites located within its dispersal range compared with a second, more widely dispersed seed type which experiences less sib competition. The prediction is discussed with respect to data from amphicarpic plants.  相似文献   

6.
As a step toward understanding how community context shapes mating system evolution, we investigated the combined role of two plant antagonisms, vegetative herbivory and intraspecific competition, for reproduction and mating system expression (relative production of selfing, cleistogamous and facultatively outcrossing, chasmogamous flowers and fruits) of Impatiens capensis. In a survey of I. capensis populations, we found that vegetative herbivory and intraspecific competition were positively correlated. In a greenhouse experiment where leaf damage and plant density were manipulated, multispecies interactions had dramatic effects on reproductive and mating system traits. Despite having additive effects on growth, herbivory and competition had nonadditive effects for mating system expression, chasmogamous fruit production, flower number and size, and cleistogamous flower production. Our results demonstrate that competitive interactions influence the effect of herbivory (and vice versa) on fitness components and mating system, and thus antagonisms may have unforeseen consequences for mating system evolution, population genetic diversity, and persistence.  相似文献   

7.
In this study, we examine the demographic consequences of mixed mating and explore the interactive effects of vegetative herbivory and mating system for population dynamics of Impatiens capensis, a species with an obligate mixed mating system (i.e., individuals produce both obligately selfing cleistogamous and facultatively outcrossing chasmogamous flowers). In two natural populations, we followed seeds derived from cleistogamous and chasmogamous flowers subject to different herbivory levels throughout their life cycle. Using a mating system-explicit projection matrix model, we found that mating system types differed in important vital rates. Cleistogamous individuals had higher rates of germination than did chasmogamous individuals, whereas chasmogamous individuals expressed a fecundity advantage over cleistogamous individuals. In addition, population growth was most sensitive to changes in vital rates of cleistogamous individuals, indicating the demographic importance of selfing for these populations. Herbivory also had demographic consequences; a 33%-49% reduction in herbivory caused the population growth rates to increase by 104%-132%, primarily because of effects on vital rates of selfed individuals. Our results not only uncover a novel consequence of mating system expression, that is, mating system influences population dynamics, but also shed light on the role of herbivores in maintaining mixed mating.  相似文献   

8.
 Axial and apical flowers of Cryptantha capituliflora were analyzed with regard to morphology and pollen tube growth to assess the occurrence of cleistogamy. Although intermediate floral forms do occur, cleistogamous flowers were significantly smaller than chasmogamous flowers, had fewer anthers, and showed a distinctive stigmatic surface. Chasmogamous flowers can be cross-pollinated. Nevertheless, the growth of self-pollen tubes in few chasmogamous buds jointly with flower characters suggests that these flowers can probably produce fruits through autonomous selfing. The mean seed number per fruit did not differ between fruits from chasmogamous and cleistogamous flowers. Cleistogamous flowers were only observed in axial inflorescences, which are completely covered by the leaf. Other species of section Cryptantha also show the same trend, with cleistogamous flowers located in the lower half of the stems. This pattern is discussed in relation to dissimilarities in the outcrossing opportunities between flower types within the plant. Received May 22, 2002; accepted November 14, 2002 Published online: March 20, 2003  相似文献   

9.
? Premise of the study: Early reproductive maturity is common in dry and ephemeral habitats and often associated with smaller flowers with increased potential for within-flower (autonomous) self-pollination. We investigated whether populations from locations that differ in moisture availability, known to vary for whole-plant development rate, also varied in the timing of autonomous selfing. This timing is of interest because the modes of selfing (prior, competing, and delayed) have different fitness consequences. ? Methods: We measured timing of anther dehiscence, stigma receptivity, and herkogamy under pollinator-free conditions for plants from three populations of Collinsia parviflora that differed in annual precipitation, flower size, and time to sexual maturity. Using a manipulative experiment, we determined potential seed production via prior, competing, and delayed autonomous selfing for each population. ? Key results: Stigma receptivity, anther dehiscence, and selfing ability covaried with whole-plant development and climate. Plants from the driest site, which reached sexual maturity earliest, had receptive stigmas and dehiscent anthers in bud. Most seeds were produced via prior selfing. The population from the wettest site with slowest development was not receptive until after flowers opened. Although competing selfing was possible, all selfing was delayed. The intermediate population was between these extremes, with significant contributions from both competing and delayed selfing. ? Conclusions: Our results demonstrate that within-species variation in the timing of selfing occurs and is related to both environmental conditions and whole-plant development rates. We suggest that, if these results can be generalized to other species, mating systems may evolve in response to ongoing climatic change.  相似文献   

10.
The presence of cleistogamous and chasmogamous flowers on the same plant individual is considered to represent a “mixed” reproductive strategy. If a cleistogamous species also exhibits clonal propagation, then competition for limited resources is assumed to exist among the three reproductive modes. To date, however, the relationships and interactions among cleistogamous, chasmogamous, and clonal modes of reproduction have received little attention. In this study, we performed manipulative experiments to investigate the interactions among these different types of reproduction in the perennial herbaceous plant species Pseudostellaria heterophylla. The results showed that 66.4%–87.6% of individuals produce chasmogamous flowers and that the fruiting rates of these flowers in each surveyed population were between 23.5% and 77.4%. Furthermore, we found that 8.3% of the individuals of this species show inbreeding depression. We also detected significant negative correlations between the production of chasmogamous and cleistogamous flowers and between cleistogamous flower production and root tuber mass. However, chasmogamous flower production in an individual plant was found to have little influence on its subsequent clonal propagation. We propose that the plasticity of reproductive strategies observed in P. heterophylla is due to changes in the resource pool and resource allocation.  相似文献   

11.
Amphicarpaea bracteata, an annual legume common in woodland communities in the eastern United States, produces three distinct types of flower: subterranean cleistogamous (SCL), aerial cleistogamous (ACL), and aerial chasmogamous (ACH). We sought to quantitatively describe the growth and reproduction of four diverse A. bracteata populations in an effort to explain the adaptive significance of this species’ variable reproductive modes. Virtually all plants develop 1 to 3 SCL seeds on subterranean cotyledonary shoots, starting in late July. Larger plants produce additional SCL seeds later from the tips of axillary shoots which bury. Seeds produced by SCL flowers are large (39 to 134 mg), have restricted dispersal, lack dormancy, have high germination , and produce relatively vigorous seedlings. ACL flowers develop from early August through plant senescence in early October, while ACH flowers appear in a pulse in late August. The number of each aerial flower type was positively correlated with plant size. The ACL flowers take significantly less time to develop mature fruits than do ACH flowers. Both aerial seeds are smaller than the subterranean (mean weights: ACL 12.1, ACH 8.7 mg), have lower germination (ACL 20.2%, ACH 15.3%), appear relatively resistant to environmental extremes, and have the potential for more widespread dispersal. Plants derived from subterranean seeds are much larger than plants derived from aerial seeds, which makes them more likely to produce axillary SCL and aerial seeds. Only larger plants derived from subterranean seeds and growing in favored sites produce ACH flowers. This imposes an alternation of selfing with outcrossing generations. This pattern of reproductive behavior in A. bracteata is similar to that found in several other amphicarpic species.  相似文献   

12.
A population of 54 Ricinocarpos pinifolius (Euphorbiaceae) plants contained male plants, which produced only staminate flowers, and hermaphrodites, which produced staminate and pistillate flowers. The fraction of pistillate flowers ranged continuously from 0 to 0.68. Insect pollination was effective and fruit set virtually complete except for losses to herbivores. Self pollen, outcross pollen from male plants, and outcross pollen from hermaphrodites were all equivalent in viability, germination, tube growth, ovule penetration, and fruit setting ability. Inbreeding depression was manifested as late abortion of some selfed seeds. Geitonogamous selfing is largely prevented by temporal separation of male and female functions within plants. This temporal separation, combined with population-wide synchrony of flowering, may create unusual conditions allowing male plants at low frequency to match hermaphrodites in reproductive success.  相似文献   

13.
Pollination-related and time-dependent floral morphological changes occur in a diverse set of angiosperm taxa and appear to be particularly common in species occupying resource-limited environments. In deer weed (Lotus scoparius), such floral modifications include a color change from yellow to orange and a folding of the banner petal down over the keel. These changes are rapidly induced by pollination, but will also occur much more slowly without pollination. Orange flowers typically lack nectar and pollen. We examined the reproductive success of these plants to test the hypothesis that retention of orange flowers increases pollinator visitation rate and fruit set while reducing costs to the pollinators. All of the common species of bee pollinators that visited deer weed easily distinguished between yellow and orange flowers at close range and preferentially probed yellow flowers. Retention of orange flowers by these plants resulted in a higher frequency of pollinator visits and a higher fruit set per flower than plants that lacked orange flowers. The number of flowers visited by each pollinator was lower on plants with a mixture of yellow and orange flowers, suggesting that the presence of orange flowers may reduce selfing. The possible selective pressures involved in the evolution of these mechanisms and their relation to stressful environments are also discussed.  相似文献   

14.
Krupnick  Gary A.  Weis  Arthur E. 《Plant Ecology》1998,134(2):151-162
Flower-feeding insects may influence the reproductive behavior of their host plant. In plants with labile sex expression, the ratio of maternal to paternal investment may change in response to damage, an effect that goes beyond the direct reduction of plant gametes. We examined the effects of floral herbivory by the beetle Meligethes rufimanus (Nitidulidae) on the ratio of hermaphroditic flowers to male flowers in an andromonoecious shrub, Isomeris arborea (Capparaceae) in southern California. Plants exposed to herbivory had a greater rate of flower bud abortion than those protected from herbivory. Exposed plants produced a greater proportion of hermaphroditic flowers to male flowers, although damaged inflorescences still produced fewer fruit. An additional manipulative experiment showed that the removal of pistils on inflorescences led to an increase in the proportion of hermaphroditic flowers. This suggests that the presence of fruit may lead to pistil suppression in developing flowers. Adaptive responses to herbivory which favor andromonoecy thus include the continued production of hermaphroditic flowers when floral damage is high (and hence low fruit set), and a switch to male flower production when floral damage is low (and fruit production increases). The consequences of an altered six ratio induced by insect herbivores may lead to indirect effects on both the male and female reproductive success of this plant.  相似文献   

15.
The effects of climate change on plant reproductive performance affects the sequence of different plant reproductive stages from flowering to seed production and viability, as well as the network of relationships between them. These effects are expected to respond to different components of climate change, such as temperature and water availability, and may be sensitive to differences in species phenology.We used long-term experimental drought and warming treatments to study the effect of climate change on flower production, fruit and seed-set, seed size and seed germination rate (proportion of germinating seeds) in three Mediterranean shrubs coexisting in a coastal shrubland.Larger plants produced significantly more flowers in all three species, and higher fruit-set in Dorycnium pentaphyllum. Flower production was reduced in drought and warming treatments in the spring-flowering species D. pentaphyllum and Helianthemum syriacum, but not in the autumn–winter species Erica multiflora, which increased flowering in the warming treatment. However, the drought treatment eventually resulted in a decreased seed-set in E. multiflora. Structural equation modelling revealed strong correlations between the sequential reproductive stages. Specifically, flower density in inflorescences determined seed-set in H. syriacum, and seed size and germination rate in E. multiflora. Nevertheless, the relevance of relationships between reproductive traits changed between climatic treatments: in D. pentaphyllum a direct relationship between plant size and seed size only arised in the drought treatment, while in H. syriacum climate treatments resulted in a stronger relationship between the number of flowers and seed-set.This experimental study shows the ability of changing climatic variables to determine the reproductive sequential process of woody species. We show that several parameters of the reproductive performance of some Mediterranean species are affected by drought and warming treatments simulating climate change, highlighting the importance of changes in both water availability and temperature, and the sequential relationship between reproductive stages. Phenological patterns also contribute to species’ differential responses to climatic change, due to the relationship of these patterns with resource availability, environmental conditions and plant–pollinator interactions.  相似文献   

16.
Summary The forest annual, Amphicarpaea bracteata L. can reproduce via aerial chasmogamous, aerial cleistogamous, and subterranean cleistogamous flowers. Both plant size and light intensity influenced the utilization of the three modes of reproduction. chasmogamous and aerial cleistogamous flower number and the ratio of chasmogamous flowers to the total number of aerial flowers increased with plant size. The latter demonstrated a shift to xenogamy and outbreeding in larger plants. Light intensity indirectly influenced reproductive modes through its infuence on plant size. Seed set by both types of aerial flowers was low and unrelated to plant size. Subterranean seed number and the total dry weight of subterranean seeds per plant increased with size. The subterranean seeds of Amphicarpaea bracteata are thirty-four times larger than the aerial seeds (fresh weight). Under field conditions, subterranean seeds had greater germination after one year than acrial seeds. The plants arising from subterranean seeds were significantly larger and more fecund than those from aerial seeds. Seeds produced by aerial cleistogamous, hand selfpollinated chasmogamous, and naturally pollinated chasmogamous flowers had equivalent germination rates and produced plants of equal size and fecundity. This suggests that the outbred progeny from chasmogamous flowers have no advantage over the inbred progeny from aerial cleistogamous flowers.  相似文献   

17.
In the cultivated cranberry (Vaccinium macrocarpon), reproductive stems produce 1-3 fruit even though they usually have 5-7 flowers in the spring. We undertook experiments to test the hypothesis that this was an adaptive life history strategy associated with reproductive effort rather than simply the result of insufficient pollination. We compared fruit production on naturally pollinated plants with those that were either manually pollinated or that were caged to exclude insects. Clearly, insects are necessary for the effective pollination of cranberry plants, but hand pollination of all flowers did not result in an increase in fruit number. Most of the upper flowers, which had significantly fewer ovules than did the lower flowers, aborted naturally soon after pollination. However, when the lower flower buds were removed, the upper flowers produced fruit. This suggests that the upper flowers may serve as a backup if the earlier blooming lower ones are lost early in the season. Furthermore, the late-blooming flowers may still contribute to the plant's reproductive success as visiting pollinators remove the pollen, which could serve to sire fruit on other plants. These results are discussed in the context of their possible evolutionary and proximate causes.  相似文献   

18.
Sex-allocation models predict that the evolution of self-fertilization should result in a reduced allocation to male function and pollinator attraction in plants. The evolution of sex allocation may be constrained by both functional and genetic factors, however. We studied sex allocation and genetic variation for floral sex ratio and other reproductive traits in a Costa Rica population of the monoecious, highly selfing annual Begonia semiovata. Data on biomass of floral structures, flower sex ratios, and fruit set in the source population were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and genetic correlations for floral sex ratio and for floral traits related to male and female function were estimated from the greenhouse-grown progeny of field-collected maternal families. The proportion of reproductive biomass invested in male function was low (0.34 at flowering, and 0.07 for total reproductive allocation). Significant among-family variation was detected in the size (mass) of individual male and female flowers, in the proportion of male flowers produced, and in the proportion of total flower mass invested in male flowers. Significant among-family variation was also found in flower number per inflorescence, petal length of male and female flowers, and petal number of female flowers. Except for female petal length, we found no difference in the mean value of these characters between selfed and outcrossed progeny, indicating that, with the possible exception of female petal length, the among-family variation detected was not the result of variation among families in the level of inbreeding. Significant positive phenotypic and broad-sense genetic correlations were detected between the mass of individual male and female flowers, between male and female petal length, and between number of male and number of female flowers per inflorescence. The ratio of stamen-to-pistil mass (0.33) was low compared to published data for autogamous species with hermaphroditic flowers, suggesting that highly efficient selfing mechanisms may evolve in monoecious species. Our results indicate that the study population harbors substantial genetic variation for reproductive characters. The positive genetic correlation between investment in male and female flowers may reflect selection for maximum pollination efficiency, because in this self-pollinating species, each female flower requires a neighboring male flower to provide pollen.  相似文献   

19.
植物交酸系统的进化、资源分配对策与遗传多样性   总被引:37,自引:10,他引:27       下载免费PDF全文
影响植物自交率进化的选择力量主要体现在两个方面:当外来花粉量不足时,自交可以提高植物的结实率,即雌性适合度(繁殖保障);而如果进行自交的花粉比异交花粉更易获得使胚珠受精的机会,那么自交也可以提高植物的雄性适合度(自动选择优势)。但是,鉴别什么时候是繁殖保障、什么时候是自动选择优势导致了自交的进化却是极其困难的。花粉贴现降低了自交植物通过异交花粉途径获得的适合度,即减弱了自动选择优势,而近交衰退既减少了自动选择优势也减少了繁残给自交者带来的利益。具有不同交配系统的植物种群将具有不同的资源分配对策。理论研究已经说明,自交率增加将减少植物对雄性功能的资源分配比例,但将使繁殖分配加大,而且在一定条件下交配系统在改变甚至可以导致植物生活史发生剧烈变化,即从多年生变为一年生。文献中支持自交减少植物雄性投入的证据有很多,但是对繁殖分配与自交率的关系目前还没有系统的研究,资源分配理论可以解释植物繁育系统的多样性,尤其是能够3说明为什么大多数植物都是雌雄同体的,自交对植物种群遗传结构的影响是减少种群内的遗传变异,增加种群间的遗传分化,长期以来人们一直猜测,自交者可能会丢掉一些长期进化的潜能,目前这个假说得到了一些支持。  相似文献   

20.
Abstract Protandry, a form of temporal separation of gender within hermaphroditic flowers, may reduce the magnitude of pollen lost to selfing (pollen discounting) and also serve to enhance pollen export and outcross siring success. Because pollen discounting is strongest when selfing occurs between flowers on the same plant, the advantage of protandry may be greatest in plants with large floral displays. We tested this hypothesis with enclosed, artificial populations of Chamerion angustifolium (Onagraceae) by experimentally manipulating protandry (producing uniformly adichogamous or mixed protandrous and adichogamous populations) and inflorescence size (two-, six-, or 10-flowered inflorescences) and measuring pollinator visitation, seed set, female outcrossing rate, and outcross siring success. Bees spent more time foraging on and visited more flowers of larger inflorescences than small. Female outcrossing rates did not vary among inflorescence size treatments. However, seed set per fruit decreased with increasing inflorescence size, likely as a result of increased abortion of selfed embryos, perhaps obscuring the magnitude of geitonogamous selfing. Protandrous plants had a marginally higher female outcrossing rate than adichogamous plants, but similar seed set. More importantly, protandrous plants had, on average, a twofold siring advantage relative to adichogamous plants. However, this siring advantage did not increase linearly with inflorescence size, suggesting that protandry acts to enhance siring success, but not exclusively by reducing between-flower interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号