首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since 1999 a lineage of the pathogen Cryptococcus gattii has been infecting humans and other animals in Canada and the Pacific Northwest of the USA. It is now the largest outbreak of a life-threatening fungal infection in a healthy population in recorded history. The high virulence of outbreak strains is closely linked to the ability of the pathogen to undergo rapid mitochondrial tubularisation and proliferation following engulfment by host phagocytes. Most outbreaks spread by geographic expansion across suitable niches, but it is known that genetic re-assortment and hybridisation can also lead to rapid range and host expansion. In the context of C. gattii, however, the likelihood of virulence traits associated with the outbreak lineages spreading to other lineages via genetic exchange is currently unknown. Here we address this question by conducting outgroup crosses between distantly related C. gattii lineages (VGII and VGIII) and ingroup crosses between isolates from the same molecular type (VGII). Systematic phenotypic characterisation shows that virulence traits are transmitted to outgroups infrequently, but readily inherited during ingroup crosses. In addition, we observed higher levels of biparental (as opposed to uniparental) mitochondrial inheritance during VGII ingroup sexual mating in this species and provide evidence for mitochondrial recombination following mating. Taken together, our data suggest that hypervirulence can spread among the C. gattii lineages VGII and VGIII, potentially creating novel hypervirulent genotypes, and that current models of uniparental mitochondrial inheritance in the Cryptococcus genus may not be universal.  相似文献   

2.
Ongoing Cryptococcus gattii outbreaks in the Western United States and Canada illustrate the impact of environmental reservoirs and both clonal and recombining propagation in driving emergence and expansion of microbial pathogens. C. gattii comprises four distinct molecular types: VGI, VGII, VGIII, and VGIV, with no evidence of nuclear genetic exchange, indicating these represent distinct species. C. gattii VGII isolates are causing the Pacific Northwest outbreak, whereas VGIII isolates frequently infect HIV/AIDS patients in Southern California. VGI, VGII, and VGIII have been isolated from patients and animals in the Western US, suggesting these molecular types occur in the environment. However, only two environmental isolates of C. gattii have ever been reported from California: CBS7750 (VGII) and WM161 (VGIII). The incongruence of frequent clinical presence and uncommon environmental isolation suggests an unknown C. gattii reservoir in California. Here we report frequent isolation of C. gattii VGIII MATα and MAT a isolates and infrequent isolation of VGI MATα from environmental sources in Southern California. VGIII isolates were obtained from soil debris associated with tree species not previously reported as hosts from sites near residences of infected patients. These isolates are fertile under laboratory conditions, produce abundant spores, and are part of both locally and more distantly recombining populations. MLST and whole genome sequence analysis provide compelling evidence that these environmental isolates are the source of human infections. Isolates displayed wide-ranging virulence in macrophage and animal models. When clinical and environmental isolates with indistinguishable MLST profiles were compared, environmental isolates were less virulent. Taken together, our studies reveal an environmental source and risk of C. gattii to HIV/AIDS patients with implications for the >1,000,000 cryptococcal infections occurring annually for which the causative isolate is rarely assigned species status. Thus, the C. gattii global health burden could be more substantial than currently appreciated.  相似文献   

3.

Background

Cryptococcus gattii is a basidiomycetous yeast that causes life-threatening disease in humans and animals. Within C. gattii, four molecular types are recognized (VGI to VGIV). The Australian VGII population has been in the spotlight since 2005, when it was suggested as the possible origin for the ongoing outbreak at Vancouver Island (British Columbia, Canada), with same-sex mating being suggested as the driving force behind the emergence of this outbreak, and is nowadays hypothesized as a widespread phenomenon in C. gattii. However, an in-depth characterization of the Australian VGII population is still lacking. The present work aimed to define the genetic variability within the Australian VGII population and determine processes shaping its population structure.

Methodology/Principal Findings

A total of 54 clinical, veterinary and environmental VGII isolates from different parts of the Australian continent were studied. To place the Australian population in a global context, 17 isolates from North America, Europe, Asia and South America were included. Genetic variability was assessed using the newly adopted international consensus multi-locus sequence typing (MLST) scheme, including seven genetic loci: CAP59, GPD1, LAC1, PLB1, SOD1, URA5 and IGS1. Despite the overall clonality observed, the presence of MAT a VGII isolates in Australia was demonstrated for the first time in association with recombination in MATα-MAT a populations. Our results also support the hypothesis of a “smouldering” outbreak throughout the Australian continent, involving a limited number of VGII genotypes, which is possibly caused by a founder effect followed by a clonal expansion.

Conclusions/Significance

The detection of sexual recombination in MATα-MAT a population in Australia is in accordance with the natural life cycle of C. gattii involving opposite mating types and presents an alternative to the same-sex mating strategy suggested elsewhere. The potential for an Australian wide outbreak highlights the crucial issue to develop active surveillance procedures.  相似文献   

4.
5.
Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight into the possible molecular and geographic origins of the outbreak.  相似文献   

6.
Cryptococcosis is mainly caused by Cryptococcus neoformans. However, the number of cases due to C. gattii is increasing, affecting mainly immunocompetent hosts. C. gattii is divided into four major molecular types, VGI to VGIV, which differ in their host range, epidemiology, antifungal susceptibility and geographic distribution. Besides studies on the Vancouver Island outbreak strains, which showed that the subtype VGIIa is highly virulent compared to the subtype VGIIb, little is known about the virulence of the other major molecular types. To elucidate the virulence potential of the major molecular types of C. gattii, Galleria mellonella larvae were inoculated with ten globally selected strains per molecular type. Survival rates were recorded and known virulence factors were studied. One VGII, one VGIII and one VGIV strain were more virulent (p <0.05) than the highly virulent Vancouver Island outbreak strain VGIIa (CDCR265), 11 (four VGI, two VGII, four VGIII and one VGIV) had similar virulence (p >0.05), 21 (five VGI, five VGII, four VGIII and seven VGIV) were less virulent (p <0.05) while one strain of each molecular type were avirulent. Cell and capsule size of all strains increased markedly during larvae infection (p <0.001). No differences in growth rate at 37°C were observed. Melanin synthesis was directly related with the level of virulence: more virulent strains produced more melanin than less virulent strains (p <0.05). The results indicate that all C. gattii major molecular types exhibit a range of virulence, with some strains having the potential to be more virulent. The study highlights the necessity to further investigate the genetic background of more and less virulent strains in order to recognize critical features, other than the known virulence factors (capsule, melanin and growth at mammalian body temperature), that maybe crucial for the development and progression of cryptococcosis.  相似文献   

7.
BackgroundThe basidiomycetous yeast Cryptococcus gattii is an emerging and primary pathogen. There is a lack of information about its environmental spread outside outbreak regions in Mediterranean Europe, North and South America. Environmental sampling for C. gattii and molecular characterization of the obtained isolates will provide an insight into the global spread of the various genotypes.MethodsWoody debris of native divi-divi (Caesalpinia coriaria) trees were sampled across Bonaire, Dutch Caribbean. Colonies suspected for Cryptococcus species were subjected to standard mycology investigations and identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Isolates identified as C. gattii were subjected to amplified fragment length polymorphism genotyping, mating-type analysis and multi-locus sequence typing.ResultsTen colonies of C. gattii were cultured from different trunk hollows of the same divi-divi tree. Molecular characterization showed that all isolates were genotype AFLP6/VGII and mating-type α. Multi-locus sequence typing revealed that all isolates were genetically indistinguishable from each other.ConclusionsC. gattii is present in the environment of Bonaire, which suggests that this yeast is likely to be present in the environment of other Caribbean islands.  相似文献   

8.
The Cryptococcus species complex contains two sibling taxa, Cryptococcus neoformans and Cryptococcus gattii. Both species are basidiomycetous yeasts and major pathogens of humans and other mammals. Genotyping methods have identified major haploid molecular types of C. neoformans (VNI, VNII, VNB and VNIV) and of C. gattii (VGI, VGII, VGIII and VGIV). To investigate the phylogenetic relationships among these haploid genotypes, we selected 73 strains from 2000 globally collected isolates investigated in our previous typing studies, representing each of these genotypes and carried out multigene sequence analyses using four genetically unlinked nuclear loci, ACT1, IDE, PLB1 and URA5. The separate or combined sequence analyses of all four loci revealed seven clades with significant support for each molecular type. However, three strains of each species revealed some incongruence between the original molecular type and the sequence-based type obtained here. The topology of the individual gene trees was identical for each clade of C. neoformans but incongruent for the clades of C. gattii indicating recent recombination events within C. gattii. There was strong evidence of recombination in the global VGII population. Both parsimony and likelihood analyses supported three major clades of C. neoformans (VNI/VNB, VNII and VNIV) and four major clades of C. gattii (VGI, VGII, VGIII and VGIV). The sequence variation between VGI, VGIII and VGIV was similar to that between VNI/VNB and VNII. MATa was for the first time identified for VGIV. The VNIV and VGII clades are basal to the C. neoformans or the C. gattii clade, respectively. Divergence times among the seven haploid monophyletic lineages in the Cryptococcus species complex were estimated by applying the hypothesis of the molecular clock. The genetic variation found among all of these haploid monophyletic lineages indicates that they warrant varietal status.  相似文献   

9.
To gain a more detailed picture of cryptococcosis in Thailand, a retrospective study of 498 C. neoformans and C. gattii isolates has been conducted. Among these, 386, 83 and 29 strains were from clinical, environmental and veterinary sources, respectively. A total of 485 C. neoformans and 13 C. gattii strains were studied. The majority of the strains (68.9%) were isolated from males (mean age of 37.97 years), 88.5% of C. neoformans and only 37.5% of C. gattii strains were from HIV patients. URA5-RFLP and/or M13 PCR-fingerprinting analysis revealed that the majority of the isolates were C. neoformans molecular type VNI regardless of their sources (94.8%; 94.6% of the clinical, 98.8% of the environmental and 86.2% of the veterinary isolates). In addition, the molecular types VNII (2.4%; 66.7% of the clinical and 33.3% of the veterinary isolates), VNIV (0.2%; 100% environmental isolate), VGI (0.2%; 100% clinical isolate) and VGII (2.4%; 100% clinical isolates) were found less frequently. Multilocus Sequence Type (MLST) analysis using the ISHAM consensus MLST scheme for the C. neoformans/C. gattii species complex identified a total of 20 sequence types (ST) in Thailand combining current and previous data. The Thai isolates are an integrated part of the global cryptococcal population genetic structure, with ST30 for C. gattii and ST82, ST83, ST137, ST141, ST172 and ST173 for C. neoformans being unique to Thailand. Most of the C. gattii isolates were ST7 = VGIIb, which is identical to the less virulent minor Vancouver island outbreak genotype, indicating Thailand as a stepping stone in the global spread of this outbreak strain. The current study revealed a greater genetic diversity and a wider range of major molecular types being present amongst Thai cryptococcal isolates than previously reported.  相似文献   

10.
Cryptococcus gattii (C. gattii) is a fungal pathogen that once caused an outbreak of cryptococcosis on Vancouver Island, and had spread worldwide, while few data were available in China. In this study, seven clinical isolates of C. gattii VGII were collected from 19 hospitals, Multi-locus Sequence Typing (MLST) analysis and whole-genome sequencing (WGS) was performed, combined with published data for phylogenetic analysis. In addition, in vitro antifungal susceptibility testing, phenotypic analysis, and in vivo virulence studies were performed, subsequently, histopathological analysis of lung tissue was performed. C.gattii VGII infected patients were mainly immunocompetent male, and most of them had symptoms of central nervous system (CNS) involvement. MLST results showed that isolates from China exhibited high genetic diversity, and sequence type (ST) 7 was the major ST among the isolates. Some clinical isolates showed a close phylogenetic relationship with strains from Australia and South America. All clinical isolates did not show resistance to antifungal drugs. In addition, there was no correlation between virulence factors (temperature, melanin production, and capsule size) and virulence while in vivo experiments showed significant differences in virulence among strains. Lung fungal burden and damage to lung tissue correlated with virulence, and degree of damage to lung tissue in mice may highlight differences in virulence. Our work seeks to provide useful data for molecular epidemiology, antifungal susceptibility, and virulence differences of C. gattii VGII in China.  相似文献   

11.
12.
Cryptococcus neoformans and Cryptococcus gattii are responsible globally for almost one million cryptococcosis cases yearly, mostly in immunocompromised patients, such as those living with HIV. Infections due to C. gattii have mainly been described in tropical and subtropical regions, but its adaptation to temperate regions was crucial in the species evolution and highlighted the importance of this pathogenic yeast in the context of disease. Cryptococcus gattii molecular type VGII has come to the forefront in connection with an on-going emergence in the Pacific North West of North America. Taking into account that previous work pointed towards South America as an origin of this species, the present work aimed to assess the genetic diversity within the Brazilian C. gattii VGII population in order to gain new insights into its origin and global dispersal from the South American continent using the ISHAM consensus MLST typing scheme. Our results corroborate the finding that the Brazilian C. gattii VGII population is highly diverse. The diversity is likely due to recombination generated from sexual reproduction, as evidenced by the presence of both mating types in clinical and environmental samples. The data presented herein strongly supports the emergence of highly virulent strains from ancestors in the Northern regions of Brazil, Amazonia and the Northeast. Numerous genotypes represent a link between Brazil and other parts of the world reinforcing South America as the most likely origin of the C. gattii VGII subtypes and their subsequent global spread, including their dispersal into North America, where they caused a major emergence.  相似文献   

13.
Human and animal infections of the fungus Cryptococcus gattii have been recognized in Oregon since 2006. Transmission is primarily via airborne environmental spores and now thought to be locally acquired due to infection in non-migratory animals and humans with no travel history. Previous published efforts to detect C. gattii from tree swabs and soil samples in Oregon have been unsuccessful. This study was conducted to determine the presence of C. gattii in selected urban parks of Oregon cities within the Willamette Valley where both human and animal cases of C. gattii have been diagnosed. Urban parks were sampled due to spatial and temporal overlap of humans, companion animals and wildlife. Two of 64 parks had positive samples for C. gattii. One park had a positive tree and the other park, 60 miles away, had positive bark mulch samples from a walkway. Genotypic subtypes identified included C. gattii VGIIa and VGIIc, both considered highly virulent in murine host models.  相似文献   

14.
BackgroundDuring 2017, twenty health districts (locations) implemented a dengue outbreak Early Warning and Response System (EWARS) in Mexico, which processes epidemiological, meteorological and entomological alarm indicators to predict dengue outbreaks and triggers early response activities.Out of the 20 priority districts where more than one fifth of all national disease transmission in Mexico occur, eleven districts were purposely selected and analyzed. Nine districts presented outbreak alarms by EWARS but without subsequent outbreaks (“non-outbreak districts”) and two presented alarms with subsequent dengue outbreaks (“outbreak districts”). This evaluation study assesses and compares the impact of alarm-informed response activities and the consequences of failing a timely and adequate response across the outbreak groups.MethodsFive indicators of dengue outbreak response (larval control, entomological studies with water container interventions, focal spraying and indoor residual spraying) were quantitatively analyzed across two groups (”outbreak districts” and “non-outbreak districts”). However, for quality control purposes, only qualitative concluding remarks were derived from the fifth response indicator (fogging).ResultsThe average coverage of vector control responses was significantly higher in non-outbreak districts and across all four indicators. In the “outbreak districts” the response activities started late and were of much lower intensity compared to “non-outbreak districts”. Vector control teams at districts-level demonstrated diverse levels of compliance with local guidelines for ‘initial’, ‘early’ and ‘late’ responses to outbreak alarms, which could potentially explain the different outcomes observed following the outbreak alarms.ConclusionFailing timely and adequate response of alarm signals generated by EWARS showed to negatively impact the disease outbreak control process. On the other hand, districts with adequate and timely response guided by alarm signals demonstrated successful records of outbreak prevention. This study presents important operational scenarios when failing or successding EWARS but warrants investigating the effectiveness and cost-effectiveness of EWARS using a more robust designs.  相似文献   

15.
Cryptococcus gattii has recently emerged as a primary pathogen of humans and wild and domesticated animals in British Columbia, particularly on Vancouver Island. C. gattii infections are typically infections of the pulmonary and/or the central nervous system, and the incidence of infection in British Columbia is currently the highest reported globally. Prior to this emergence, the environmental distribution of and the extent of colonization by C. gattii in British Columbia were unknown. We characterized the environmental sources and potential determinants of colonization in British Columbia. C. gattii was isolated from tree surfaces, soil, air, freshwater, and seawater, and no seasonal prevalence was observed. The C. gattii concentrations in air samples were significantly higher during the warm, dry summer months, although potentially infectious propagules (<3.3 μm in diameter) were present throughout the year. Positive samples were obtained from many different areas of British Columbia, and some locations were colonization “hot spots.” C. gattii was generally isolated from acidic soil, and geographic differences in soil pH may influence the extent of colonization. C. gattii soil colonization also was associated with low moisture and low organic carbon contents. Most of the C. gattii isolates recovered belonged to the VGIIa genetic subtype; however, sympatric colonization by the VGIIb strain was observed at most locations. At one sampling site, VGIIa, VGIIb, VGI, and the Cryptococcus neoformans serotype AD hybrid all were coisolated. Our findings indicate extensive colonization by C. gattii within British Columbia and highlight an expansion of the ecological niche of this pathogen.  相似文献   

16.
This study provides a comprehensive picture of the C. neoformans/C. gattii molecular types most often associated with human cryptococcosis in Portugal and assesses the impact of C. gattii in these infections. One hundred and twenty-two clinical isolates, from distinct patients, were identified as C. neoformans and genotyped by URA5-RFLP, with the molecular types VNI (45.5 %) and VNIII (30.9 %) being the most commonly found ones. The molecular types VNII (11.4 %) and VNIV (11.4 %) were less abundant. One patient was found to be infected with a VGII isolate. This patient exhibited unusual clinical symptoms of cryptococcosis, reinforcing the suspicion for the presence of a different genotypic pattern, as determined afterwards. This case was detected in 2007 and is the first report of a potential autochthonous C. gattii infection case in Portugal, as the patient revealed no historical record of travelling outside the country.  相似文献   

17.
As is the case globally, Cryptococcus gattii is a less frequent cause of cryptococcosis than Cryptococcus neoformans in South Africa. We performed multilocus sequence typing (MLST) and fluconazole susceptibility testing of 146 isolates randomly selected from 750 South African patients with C. gattii disease identified through enhanced laboratory surveillance, 2005 to 2013. The dominant molecular type was VGIV (101/146, 70%), followed by VGI (40/146, 27%), VGII (3/146, 2%) and VGIII (2/146, 1%). Among the 146 C. gattii isolates, 99 different sequence types (STs) were identified, with ST294 (14/146, 10%) and ST155 (10/146, 7%) being most commonly observed. The fluconazole MIC50 and MIC90 values of 105 (of 146) randomly selected C. gattii isolates were 4 μg/ml and 16 μg/ml, respectively. VGIV isolates had a lower MIC50 value compared to non-VGIV isolates, but these values were within one double-dilution of each other. HIV-seropositive patients had a ten-fold increased adjusted odds of a VGIV infection compared to HIV-seronegative patients, though with small numbers (99/136; 73% vs. 2/10; 20%), the confidence interval (CI) was wide (95% CI: 1.93–55.31, p = 0.006). Whole genome phylogeny of 98 isolates of South Africa’s most prevalent molecular type, VGIV, identified that this molecular type is highly diverse, with two interesting clusters of ten and six closely related isolates being identified, respectively. One of these clusters consisted only of patients from the Mpumalanga Province in South Africa, suggesting a similar environmental source. This study contributed new insights into the global population structure of this important human pathogen.  相似文献   

18.
Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the ‘amplifier’ function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks.  相似文献   

19.

Background

Cryptococcosis due to Cryptococcus gattii is endemic in various parts of the world, affecting mostly immunocompetent patients. A national surveillance study of cryptococcosis, including demographical, clinical and microbiological data, has been ongoing since 1997 in Colombia, to provide insights into the epidemiology of this mycosis.

Methodology/Principal Findings

From 1,209 surveys analyzed between 1997–2011, 45 cases caused by C. gattii were reported (prevalence 3.7%; annual incidence 0.07 cases/million inhabitants/year). Norte de Santander had the highest incidence (0.81 cases/million/year), representing 33.3% of all cases. The male: female ratio was 3.3∶1. Mean age at diagnosis was 41±16 years. No specific risk factors were identified in 91.1% of patients. HIV infection was reported in 6.7% of patients, autoimmune disease and steroids use in 2.2%. Clinical features included headache (80.5%), nausea/vomiting (56.1%) and neurological derangements (48.8%). Chest radiographs were taken in 21 (46.7%) cases, with abnormal findings in 7 (33.3%). Cranial CT scans were obtained in 15 (33.3%) cases, with abnormalities detected in 10 (66.7%). Treatment was well documented in 30 cases, with most receiving amphotericin B. Direct sample examination was positive in 97.7% cases. Antigen detection was positive for all CSF specimens and for 75% of serum samples. C. gattii was recovered from CSF (93.3%) and respiratory specimens (6.6%). Serotype was determined in 42 isolates; 36 isolates were serotype B (85.7%), while 6 were C (14.3%). The breakdowns of molecular types were VGII (55.6%), VGIII (31.1%) and VGI (13.3%). Among 44 strains, 16 MLST sequence types (ST) were identified, 11 of them newly reported.

Conclusions/Significance

The results of this passive surveillance study demonstrate that cryptococcosis caused by C. gattii has a low prevalence in Colombia, with the exception of Norte de Santander. The predominance of molecular type VGII is of concern considering its association with high virulence and the potential to evolve into outbreaks.  相似文献   

20.
In China, brucellosis is an endemic disease and the main sources of brucellosis in animals and humans are infected sheep, cattle and swine. Brucella melitensis (biovars 1 and 3) is the predominant species, associated with sporadic cases and outbreak in humans. Isolates of B. abortus, primarily biovars 1 and 3, and B. suis biovars 1 and 3 are also associated with sporadic human brucellosis. In this study, the genetic profiles of B. melitensis and B. abortus isolates from humans and animals were analyzed and compared by multi-locus variable-number tandem-repeat analysis (MLVA). Among the B. melitensis isolates, the majority (74/82) belonged to MLVA8 genotype 42, clustering in the ‘East Mediterranean’ group. Two B. melitensis biovar 1 genotype 47 isolates, belonging to the ‘Americas’ group, were recovered; both were from the Himalayan blue sheep (Pseudois nayaur, a wild animal). The majority of B. abortus isolates (51/70) were biovar 3, genotype 36. Ten B. suis biovar 1 field isolates, including seven outbreak isolates recovered from a cattle farm in Inner Mongolia, were genetically indistinguishable from the vaccine strain S2, based on MLVA cluster analysis. MLVA analysis provided important information for epidemiological trace-back. To the best of our knowledge, this is the first report to associate Brucella cross-infection with the vaccine strain S2 based on molecular comparison of recovered isolates to the vaccine strain. MLVA typing could be an essential assay to improve brucellosis surveillance and control programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号