首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epstein-Barr virus (EBV) is a vaccine/immunotherapy target due to its association with several human malignancies. EBNA-1 is an EBV protein consistently expressed in all EBV-associated cancers. Herein, EBNA-1-specific T cell epitopes were evaluated after AdC–rhEBNA-1 immunizations in chronically lymphocryptovirus-infected rhesus macaques, an EBV infection model. Preexisting rhEBNA-1-specific responses were augmented in 4/12 animals, and new epitopes were recognized in 5/12 animals after vaccinations. This study demonstrated that EBNA-1-specific T cells can be expanded by vaccination.  相似文献   

2.
Fogg MH  Kaur A  Cho YG  Wang F 《Journal of virology》2005,79(20):12681-12691
Epstein-Barr virus (EBV) infection persists for life in humans, similar to other gammaherpesviruses in the same lymphocryptovirus (LCV) genus that naturally infect Old World nonhuman primates. The specific immune elements required for control of EBV infection and potential immune evasion strategies essential for persistent EBV infection are not well defined. We evaluated the cellular immune response to latent infection proteins in rhesus macaques with naturally and experimentally acquired rhesus LCV (rhLCV) infection. RhLCV EBNA-1 (rhEBNA-1) was the most frequently targeted latent infection protein and induced the most robust responses by peripheral blood mononuclear cells tested ex vivo using the gamma interferon ELISPOT assay. In contrast, although in vitro stimulation and expansion of rhLCV-specific T lymphocytes demonstrated cytotoxic T-lymphocyte (CTL) activity against autologous rhLCV-infected B cells, rhEBNA-1-specific CTL activity could not be detected. rhEBNA-1 CTL epitopes were identified and demonstrated that rhEBNA-1-specific CTL were stimulated and expanded in vitro but did not lyse targets expressing rhEBNA-1. Similarly, rhEBNA-1-specific CTL clones were able to lyse targets pulsed with rhEBNA-1 peptides or expressing rhEBNA-1 deleted for the glycine-alanine repeat (GAR) but not full-length rhEBNA-1 or rhLCV-infected B cells. These studies show that the rhLCV-specific immune response to latent infection proteins is similar to the EBV response in humans, and a potential immune evasion mechanism for EBNA-1 has been conserved in rhLCV. Thus, the rhLCV animal model can be used to analyze the immune responses important for control of persistent LCV infection and the role of the EBNA-1 GAR for immune evasion in vivo.  相似文献   

3.
Although CD8(+) T lymphocytes targeting lytic infection proteins dominate the immune response to acute and persistent EBV infection, their role in immune control of EBV replication is not known. Rhesus lymphocryptovirus (rhLCV) is a gamma-herpesvirus closely related to EBV, which establishes persistent infection in rhesus macaques. In this study, we investigated cellular immune responses to the rhLCV BZLF1 (rhBZLF1) homolog in a cohort of rhLCV-seropositive rhesus macaques. rhBZLF1-specific IFN-gamma ELISPOT responses ranging between 56 and 3070 spot-forming cells/10(6) PBMC were detected in 36 of 57 (63%) rhesus macaques and were largely mediated by CD8(+) T lymphocytes. The prevalence and magnitude of ELISPOT responses were greater in adult (5-15 years of age) rather than juvenile macaques (<5 years of age), suggesting that rhBZLF1-specific CTL increase over time following early primary infection. A highly immunogenic region in the carboxyl terminus of the rhBZLF1 protein containing overlapping CTL epitopes restricted by Mamu-A*01 and other as yet unidentified MHC class I alleles was identified. The presence of a robust CD8(+) T lymphocyte response targeting this lytic infection protein in both rhesus macaques and humans suggests that these CTL may be important for immune control of EBV-related gamma-herpesvirus infection. These data underscore the utility of the rhLCV-macaque model for studies of EBV pathogenesis.  相似文献   

4.
Orlova N  Wang F  Fogg MH 《Journal of virology》2011,85(23):12821-12824
We examined the CD8(+) T cell repertoire against lytic infection antigens in rhesus macaques persistently infected with the Epstein-Barr virus (EBV)-related lymphocryptovirus (rhLCV). CD8(+) T cells specific for late (L) antigens were detected at rates comparable to those for early antigens and were associated with increasing duration of infection. L antigen-specific CD8(+) T cells were also readily detected in adult, EBV-positive humans. Thus, viral major histocompatibility complex class I (MHCI) immune evasion genes expressed during lytic LCV infection do not prevent L-specific CD8(+) T cell development over time during persistent infection.  相似文献   

5.
An EBV-specific cellular immune response is associated with the control of EBV-associated malignancies and lymphoproliferative diseases, some of which have been successfully treated by adoptive T cell therapy. Therefore, many methods have been used to measure EBV-specific cellular immune responses. Previous studies have mainly used autologous EBV-transformed B-lymphoblastoid cell lines (B-LCLs), recombinant viral vectors transfected or peptide pulsed dendritic cells (DCs) as stimulators of CD8+ and CD4+ T lymphocytes. In the present study, we used an interferon-γ (IFN-γ) enzyme-linked immunospot (ELISPOT) assay by using isolated CD8+ and CD4+ T cells stimulated with mRNA-transfected DCs. The frequency of latent membrane protein 1 (LMP1)-specific IFN-γ producing CD4+ T cells was significantly higher than that of LMP2a. The frequency of IFN-γ producing CD4+ T cells was significantly correlated with that of CD8+ T cells in LMP1-specific immune responses (r = 0.7187, Pc < 0.0001). To determine whether there were changes in LMP1- or LMP2a-specific immune responses, subsequent peripheral blood mononuclear cells (PBMCs) samples were analyzed. Significant changes were observed in 5 of the 10 donors examined, and CD4+ T cell responses showed more significant changes than CD8+ T cell responses. CD8+ and CD4+ T cells from EBV-seropositive donors secreted only the Th1 cytokines IFN-γ, TNF-α, and IL-2, while Th2 (IL-4) and Th17 (IL-17a) cytokines were not detected. CD4+ T cells secreted significantly higher cytokine levels than did CD8+ T cells. Analysis of EBV-specific T cell responses using autologous DCs transfected with mRNA might provide a comprehensive tool for monitoring EBV infection and new insights into the pathogenesis of EBV-associated diseases.  相似文献   

6.
Rhesus macaques are naturally infected with a gammaherpesvirus which is in the same lymphocryptovirus (LCV) genus as and closely related to Epstein-Barr virus (EBV). The rhesus macaque LCV (rhLCV) contains a repertoire of genes identical to that of EBV, and experimental rhLCV infection of naive rhesus macaques accurately models acute and persistent EBV infection of humans. We cloned the LCL8664 rhLCV strain as a bacterial artificial chromosome to create recombinant rhLCV for investigation in this animal model system. A recombinant rhLCV (clone 16 rhLCV) carrying a mutation in the putative immune evasion gene rhBARF1 was created along with a rescued wild-type (rWT) rhLCV in which the rhBARF1 open reading frame (ORF) was repaired. The rWT rhLCV molecular clone demonstrated viral replication and B-cell immortalization properties comparable to those of the naturally derived LCL8664 rhLCV. Qualitatively, clone 16 rhLCV carrying a mutated rhBARF1 was competent for viral replication and B-cell immortalization, but quantitative assays showed that clone 16 rhLCV immortalized B cells less efficiently than LCL8664 and rWT rhLCV. Functional studies showed that rhBARF1 could block CSF-1 cytokine signaling as well as EBV BARF1, whereas the truncated rhBARF1 from clone 16 rhLCV was a loss-of-function mutant. These recombinant rhLCV can be used in the rhesus macaque animal model system to better understand how a putative viral immune evasion gene contributes to the pathogenesis of acute and persistent EBV infection. The development of a genetic system for making recombinant rhLCV constitutes a major advance in the study of EBV pathogenesis in the rhesus macaque animal model.  相似文献   

7.
Every year, Dengue virus (DENV) infects approximately 100 million people. There are currently several vaccines undergoing clinical studies, but most target the induction of neutralizing antibodies. Unfortunately, DENV infection can be enhanced by subneutralizing levels of antibodies that bind virions and deliver them to cells of the myeloid lineage, thereby increasing viral replication (termed antibody-dependent enhancement [ADE]). T lymphocyte-based vaccines may offer an alternative that avoids ADE. The goal of our study was to describe the cellular immune response generated after primary DENV infection in Indian rhesus macaques. We infected eight rhesus macaques with 105 plaque-forming units (PFU) of DENV serotype 2 (DENV2) New Guinea C (NGC) strain, and monitored viral load and the cellular immune response to the virus. Viral replication peaked at day 4 post-infection and was resolved by day 10. DENV-specific CD4+ and CD8+ T lymphocytes targeted nonstructural (NS) 1, NS3 and NS5 proteins after resolution of peak viremia. DENV-specific CD4+ cells expressed interferon-gamma (IFN-γ) along with tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), and macrophage inflammatory protein-1 beta (MIP-1β). In comparison, DENV-specific CD8+ cells expressed IFN-γ in addition to MIP-1β and TNF-α and were positive for the degranulation marker CD107a. Interestingly, a fraction of the DENV-specific CD4+ cells also stained for CD107a, suggesting that they might be cytotoxic. Our results provide a more complete understanding of the cellular immune response during DENV infection in rhesus macaques and contribute to the development of rhesus macaques as an animal model for DENV vaccine and pathogenicity studies.  相似文献   

8.
9.
High frequencies of EBV-specific CD8(+) T cells have been detected during acute EBV infection, yet persistent infection inevitably results. To address this issue, we characterized the phenotype and function of epitope-specific CD8(+) T cell populations from presentation with acute through latent infection. Considerable phenotypic and functional heterogeneity within, as well as between, two different epitope-specific populations was observed over time following acute infection. B7 EBV-encoded nuclear Ag (EBNA)-3A-specific CD8(+) T cells expressed only CD45RO from acute through latent EBV infection. A2 BMLF-1-specific CD8(+) T cells expressed CD45RO during acute infection and either CD45RA or CD45RO during latent EBV infection. This difference in CD45 isoform expression between the two epitope-specific populations did not translate into differences in perforin content, the ability to produce IFN-gamma, or the ability to proliferate in response to Ag in vitro. In individuals with latent EBV infection, the frequencies of A2 BMLF-1- or B7 EBNA-3A-specific CD8(+) T cells that expressed CD45RA, CD45RO, CD62 ligand, CCR7, and perforin were stable over time. However, the expression of CD62 ligand and CCR7 was significantly higher among EBNA-3A-specific CD8(+) T cells than among BMLF-1-specific CD8(+) T cells. Further work is necessary to understand how phenotypic and functional differences between EBV epitope-specific CD8(+) T cells are related to the biology of the virus and to the equilibrium between the virus and the host during persistent infection.  相似文献   

10.
Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans.  相似文献   

11.
The human polyomavirus BK virus (BKV) establishes a latent and asymptomatic infection in the majority of the population. In immunocompromised individuals, the virus frequently (re)activates and may cause severe disease such as interstitial nephritis and hemorrhagic cystitis. Currently, the therapeutic options are limited to reconstitution of the antiviral immune response. T cells are particularly important for controlling this virus, and T cell therapies may provide a highly specific and effective mode of treatment. However, little is known about the phenotype and function of BKV-specific T cells in healthy individuals. Using tetrameric BKV peptide-HLA-A02 complexes, we determined the presence, phenotype, and functional characteristics of circulating BKV VP1-specific CD8+ T cells in 5 healthy individuals. We show that these cells are present in low frequencies in the circulation and that they have a resting CD45RA CD27+ memory and predominantly CCR7 CD127+ KLRG1+ CD49dhi CXCR3hi T-betint Eomesoderminlo phenotype. Furthermore, their direct cytotoxic capacity seems to be limited, since they do not readily express granzyme B and express only little granzyme K. We compared these cells to circulating CD8+ T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and influenza virus (Flu) in the same donors and show that BKV-specific T cells have a phenotype that is distinct from that of CMV- and EBV-specific T cells. Lastly, we show that BKV-specific T cells are polyfunctional since they are able to rapidly express interleukin-2 (IL-2), gamma interferon (IFN-γ), tumor necrosis factor α, and also, to a much lower extent, MIP-1β and CD107a.  相似文献   

12.
Coinfection with Plasmodium falciparum malaria and Epstein-Barr virus (EBV) is a major risk factor for endemic Burkitt lymphoma (eBL), still one of the most prevalent pediatric cancers in equatorial Africa. Although malaria infection has been associated with immunosuppression, the precise mechanisms that contribute to EBV-associated lymphomagenesis remain unclear. In this study, we used polychromatic flow cytometry to characterize CD8+ T-cell subsets specific for EBV-derived lytic (BMFL1 and BRLF1) and latent (LMP1, LMP2, and EBNA3C) antigens in individuals with divergent malaria exposure. No malaria-associated differences in EBV-specific CD8+ T-cell frequencies were observed. However, based on a multidimensional analysis of CD45RO, CD27, CCR7, CD127, CD57, and PD-1 expression, we found that individuals living in regions with intense and perennial (holoendemic) malaria transmission harbored more differentiated EBV-specific CD8+ T-cell populations that contained fewer central memory cells than individuals living in regions with little or no (hypoendemic) malaria. This profile shift was most marked for EBV-specific CD8+ T-cell populations that targeted latent antigens. Importantly, malaria exposure did not skew the phenotypic properties of either cytomegalovirus (CMV)-specific CD8+ T cells or the global CD8+ memory T-cell pool. These observations define a malaria-associated aberration localized to the EBV-specific CD8+ T-cell compartment that illuminates the etiology of eBL.  相似文献   

13.
Latent membrane antigen 1 and -2 (LMP-1/2)-specific CD8+ T cells from newly diagnosed and relapsed Hodgkin''s lymphoma (HL) patients display a selective functional impairment. In contrast, CD8+ T cells specific for Epstein-Barr virus (EBV) nuclear proteins and lytic antigens retain normal T-cell function. Reversion to a dysfunctional phenotype of LMP-1/2-specific T cells is coincident with the regression of HL. To delineate the potential basis for this differential susceptibility for the loss of function, we have carried out a comprehensive functional analysis of EBV-specific T cells using ex vivo multiparametric flow cytometry in combination with assessment of antigen-driven proliferative potential. This analysis revealed that LMP-1/2-specific T cells from healthy virus carriers display a deficient polyfunctional profile compared to that of T cells specific for epitopes derived from EBV nuclear proteins and lytic antigens. Furthermore, LMP-specific T-cells are highly susceptible to galectin-1-mediated immunosuppression and are less likely to degranulate following exposure to cognate peptide epitopes and poorly recognized endogenously processed epitopes from virus-infected B cells. More importantly, ex vivo stimulation of these T cells with an adenoviral vector encoding multiple minimal CD8+ T-cell epitopes as a polyepitope, in combination with a γC cytokine, interleukin-2, restored polyfunctionality and shielded these cells from the inhibitory effects of galectin-1.Following primary lytic infection, Epstein-Barr virus (EBV) induces a lifelong latent infection. Cytotoxic T lymphocytes (CTL) play a critical role in limiting infection during the lytic stages of infection and in controlling latently infected cells (9, 21). Although latent EBV infection is asymptomatic in most individuals, it is associated with a number of malignancies that arise in both immunocompetent and immunocompromised individuals (11). Malignancies occurring in immunocompromised individuals, such as the posttransplant lymphomas, typically display a latency type 3 pattern of gene expression, characterized by the expression of the immunodominant EBV nuclear antigens 3 to 6 (EBNA3-6) and of the less-immunogenic antigens EBNA1 and latent membrane proteins 1 and 2 (LMP-1/2). Immune escape likely occurs in this setting due to the direct suppression of lymphocyte function by immunosuppressive drugs (5, 25, 26). Conversely, malignancies occurring in immunocompetent individuals display either a latency type 1 profile, expressing only EBNA1, or a latency type 2 profile, expressing LMP-1/2, in addition to EBNA1. While latency type 1 malignancies, including Burkitt''s lymphoma, display a reduction in major histocompatibility complex class I (MHC-I) surface expression and present antigen poorly to CD8+ T cells (23, 24), providing a mechanism for immune escape from CTL, latency type 2 malignancies, including Hodgkin''s lymphoma (HL), retain the capacity to process and present antigen to CD8+ T cells (10, 15), suggesting that other mechanisms of escape from CTL recognition are occurring. We have recently demonstrated that during the acute stages of HL, LMP-specific T cells display a loss of T-cell function (3). Recovery of T-cell function is associated with remission. Recent studies in our laboratory have suggested a role for galectin-1 (Gal-1) in mediating immunosuppression of T cells during the acute stages of HL (4). Gal-1 expression in Hodgkin Reed-Sternberg cells was associated with a reduced CD8+ T-cell infiltrate. Furthermore, Gal-1 was shown to inhibit the proliferation of EBV-specific T cells in response to lymphoblastoid cell lines (LCL). In this study, we have now assessed the impact Gal-1 has upon the function of EBV-specific T cells with different specificities and the functional differences that exist between these T-cell populations. These studies demonstrate that LMP-1/2 and EBNA1-specific T cells are more susceptible to the immunosuppressive effects of Gal-1, which is associated with a qualitative inferiority in these T cells. However, T-cell functionality can be improved following in vitro expansion, which coincides with enhanced resistance to the suppressive effects of Gal-1.  相似文献   

14.
Epstein-Barr virus (EBV) establishes lifelong persistent infections in humans and has been implicated in the pathogenesis of several human malignancies. Protective immunity against EBV is mediated by T cells, as indicated by an increased incidence of EBV-associated malignancies in immunocompromised patients, and by the successful treatment of EBV-associated post-transplant lymphoproliferative disease (PTLD) in transplant recipients by the infusion of polyclonal EBV-specific T cell lines. To implement this treatment modality as a conventional therapeutic option, and to extend this protocol to other EBV-associated diseases, generic and more direct approaches for the generation of EBV-specific T cell lines enriched in disease-relevant specificities need to be developed. To this aim, we studied the poorly defined EBV-specific CD4+ T cell response during acute and chronic infection.  相似文献   

15.
Differentiation and survival defects of human immunodeficiency virus (HIV)-specific CD8(+) T cells may contribute to the failure of HIV-specific CD8(+) T cells to control HIV replication. It is not known, however, whether simian immunodeficiency virus (SIV)-infected rhesus macaques show comparable defects in these virus-specific CD8(+) T cells or when such defects are established during infection. Peripheral blood cells from acutely and chronically infected rhesus macaques were stained ex vivo for memory subpopulations and examined by in vitro assays for apoptosis sensitivity. We show here that SIV-specific CD8(+) T cells from chronically SIV infected rhesus macaques show defects comparable to those observed in HIV infection, namely, a skewed CD45RA(-) CD62L(-) effector memory phenotype, reduced Bcl-2 levels, and increased levels of spontaneous and CD95-induced apoptosis of SIV-specific CD8(+) T cells. Longitudinal studies showed that the survival defects and phenotype are established early in the first few weeks of SIV infection. Most importantly, they appear to be antigen driven, since most probably the loss of epitope recognition due to viral escape results in the reversal of the phenotype and reduced apoptosis sensitivity, something we observed also for animals treated with antiretroviral therapy. These findings further support the use of SIV-infected rhesus macaques to investigate the phenotypic changes and apoptotic defects of HIV-specific CD8(+) T cells and indicate that such defects of HIV-specific CD8(+) T cells are the result of chronic antigen stimulation.  相似文献   

16.
Acute Epstein-Barr virus (EBV) infection is the most common cause of Infectious Mononucleosis. Nearly all adult humans harbor life-long, persistent EBV infection which can lead to development of cancers including Hodgkin Lymphoma, Burkitt Lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and lymphomas in immunosuppressed patients. BARF1 is an EBV replication-associated, secreted protein that blocks Colony Stimulating Factor 1 (CSF-1) signaling, an innate immunity pathway not targeted by any other virus species. To evaluate effects of BARF1 in acute and persistent infection, we mutated the BARF1 homologue in the EBV-related herpesvirus, or lymphocryptovirus (LCV), naturally infecting rhesus macaques to create a recombinant rhLCV incapable of blocking CSF-1 (ΔrhBARF1). Rhesus macaques orally challenged with ΔrhBARF1 had decreased viral load indicating that CSF-1 is important for acute virus infection. Surprisingly, ΔrhBARF1 was also associated with dramatically lower virus setpoints during persistent infection. Normal acute viral load and normal viral setpoints during persistent rhLCV infection could be restored by Simian/Human Immunodeficiency Virus-induced immunosuppression prior to oral inoculation with ΔrhBARF1 or infection of immunocompetent animals with a recombinant rhLCV where the rhBARF1 was repaired. These results indicate that BARF1 blockade of CSF-1 signaling is an important immune evasion strategy for efficient acute EBV infection and a significant determinant for virus setpoint during persistent EBV infection.  相似文献   

17.
Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus. The mechanisms by which HHV-6 establishes latency and immunosuppression in its host are not well understood. Here we characterized HHV-6-specific T cells in peripheral blood mononuclear cells (PBMCs) from HHV-6-infected donors. Our results showed that HHV-6 infection could induce both CD4+ and CD8+ HHV-6-specific regulatory T (Treg) cells. These HHV-6-specific Treg cells had potent suppressive activity and expressed high levels of Treg-associated molecules CD25, FoxP3, and GITR. Both CD4+ and CD8+ Treg cells secreted gamma interferon (IFN-γ) and interleukin-10 (IL-10) but little or no IL-2, IL-4, or transforming growth factor β (TGF-β). Furthermore, HHV-6-specifc Treg cells not only could suppress naive and HHV-6-specific CD4+ effector T cell immune responses but also could impair dendritic cell (DC) maturation and functions. In addition, the suppressive effects mediated by HHV-6-specific Treg cells were mainly through a cell-to-cell contact-dependent mechanism but not through the identified cytokines. These results suggest that HHV-6 may utilize the induction of Treg cells as a strategy to escape antivirus immune responses and maintain the latency and immunosuppression in infected hosts.  相似文献   

18.

Background

A large number of human tumor-associated antigens that are recognized by CD8+ T cells in a human leukocyte antigen class I (HLA-I)-restricted fashion have been identified. Special AT-rich sequence binding protein 1 (SATB1) is highly expressed in many types of human cancers as part of their neoplastic phenotype, and up-regulation of SATB1 expression is essential for tumor survival and metastasis, thus this protein may serve as a rational target for cancer vaccines.

Methodology/Principal Findings

Twelve SATB1-derived peptides were predicted by an immuno-informatics approach based on the HLA-A*02 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from HLA-A*02+ healthy donors and/or HLA-A*02+ cancer patients. The recognition of HLA-A*02+ SATB1-expressing cancer cells was also tested. Among the twelve SATB1-derived peptides, SATB1565–574 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and cancer patients. Importantly, SATB1565–574-specific T cells recognized and killed HLA-A*02+ SATB1+ cancer cells in an HLA-I-restricted manner.

Conclusions/Significance

We have identified a novel HLA-A*02-restricted SATB1-derived peptide epitope recognized by CD8+ T cells, which, in turn, recognizes and kills HLA-A*02+ SATB1+ tumor cells. The SATB1-derived epitope identified may be used as a diagnostic marker as well as an immune target for development of cancer vaccines.  相似文献   

19.
20.
Loss of intestinal CD4+ T cells was associated with decreased production of several T-helper 1 (TH1) and TH2 cytokines and increased production of interleukin 17 (IL-17), gamma interferon (IFN-γ), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by CD8+ T cells 21 days after simian immunodeficiency virus (SIV) infection in rhesus macaques. Shifting of mucosal TH1 to TH2 or T-cytotoxic 1 (TC1) to TC2 cytokine profiles was not evident. Additionally, both CD4+ and CD8+ T cells showed upregulation of macrophage migration inhibition factor (MIF) and basic fibroblast growth factor (FGF-basic) cytokines that have been linked to HIV disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号