首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
F4 enterotoxigenic Escherichia coli (F4 ETEC) are an important cause of diarrhea in neonatal and newly-weaned pigs. Based on the predicted differential O-glycosylation patterns of the 2 MUC13 variants (MUC13A and MUC13B) in F4ac ETEC susceptible and F4ac ETEC resistant pigs, the MUC13 gene was recently proposed as the causal gene for F4ac ETEC susceptibility. Because the absence of MUC13 on Western blot from brush border membrane vesicles of F4ab/acR+ pigs and the absence of F4ac attachment to immunoprecipitated MUC13 could not support this hypothesis, a new GWAS study was performed using 52 non-adhesive and 68 strong adhesive pigs for F4ab/ac ETEC originating from 5 Belgian farms. A refined candidate region (chr13: 144,810,100–144,993,222) for F4ab/ac ETEC susceptibility was identified with MUC13 adjacent to the distal part of the region. This candidate region lacks annotated genes and contains a sequence gap based on the sequence of the porcine GenomeBuild 10.2. We hypothesize that a porcine orphan gene or trans-acting element present in the identified candidate region has an effect on the glycosylation of F4 binding proteins and therefore determines the F4ab/ac ETEC susceptibility in pigs.  相似文献   

2.
3.
4.

Background and Aims

Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium.

Methodology

By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium.

Results

A significant higher expression of IL-12 and TNFα and a clear potentiation of the expression of IL-1β, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 µg/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 µg/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON.

Conclusion

These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut.  相似文献   

5.

Background

The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known.

Methodology/Principal Findings

In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN.

Conclusions

We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.  相似文献   

6.

Background and Aims

Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated.

Methods

A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity.

Results

Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL.

Conclusions

Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity.  相似文献   

7.

Background

Enterotoxigenic Escherichia coli (ETEC) strains are the leading bacterial cause of diarrhea to humans and farm animals. These ETEC strains produce heat-labile toxin (LT) and/or heat-stable toxins that include type I (STa), type II (STb), and enteroaggregative heat-stable toxin 1 (EAST1). LT, STa, and STb (in pigs) are proven the virulence determinants in ETEC diarrhea. However, significance of EAST1 in ETEC-associated diarrheal has not been determined, even though EAST1 is highly prevalent among ETEC strains.

Methodology/Principal Findings

In this study, we constructed E. coli strains to express EAST1 toxin as the only toxin and studied them in cell lines and five-day old gnotobiotic piglets to determine significance of EAST1 toxin. Data from in vitro studies indicated that EAST1 did not stimulate an increase of intracellular cyclic AMP or GMP levels in T-84 cells or porcine cell line IPEC-J2, nor did it enhance LT or STa toxin of ETEC strains in stimulation of cAMP or cGMP in T-84 cells. In addition, 5-day old gnotobiotic pigs challenged with E. coli strains expressing EAST1 as the only toxin did not developed diarrhea or signs of clinical disease during 72 h post-inoculation.

Conclusion/Significance

Results from this study indicated that EAST1 alone is not sufficient to cause diarrhea in five-day old gnotobiotic pigs, and suggest that EAST1 likely is not a virulence determinant in ETEC-associated diarrhea.  相似文献   

8.
Type I fimbriae commonly expressed by Escherichia coli mediate initial attachment of bacteria to host epithelial cells. However, the role of type I fimbriae in the adherence of porcine enterotoxigenic E. coli (ETEC) to host receptors is unclear. In this study, we examined the role of type I fimbriae in the adherence and biofilm formation of F18ac+ ETEC by constructing mutant strains with deletion of type I fimbrial major subunit (fimA) or minor subunit (fimH). The data indicated that the isogenic ΔfimA and ΔfimH mutants showed significantly lower adherence to porcine epithelial IPEC-1 and IPEC-J2 cells as compared to the F18ac+ ETEC parent strain. In addition, the adherence of F18ac+ ETEC to both cell lines was blocked by the presence of 0.5% D-mannose in the cell culture medium. In addition, both mutant strains impaired their ability to form biofilm in vitro. Interestingly, the deletion of fimA or fimH genes resulted in remarkable up-regulation of the expression of adhesin involved in diffuse adherence (AIDA-I). These results indicated that type I fimbriae may be required for efficient adherence of F18ac+ ETEC to pig epithelial cells and, perhaps, biofilm formation.  相似文献   

9.
Lu MP  Chen RX  Wang ML  Zhu XJ  Zhu LP  Yin M  Zhang ZD  Cheng L 《PloS one》2011,6(11):e27363

Background

The IL4, IL13, and IL4 receptor α chain (IL4RA) genes are candidate genes for atopic diseases. We hypothesized that the polymorphisms in these genes are associated with persistent allergic rhinitis (PER).

Objective

To investigate the association of the potential functional polymorphisms in IL4, IL13, and IL4RA with PER induced by house dust mites in a Chinese population.

Methods

Using the TaqMan method, we genotyped six single nucleotide polymorphisms (SNPs) including C-590T in IL4, C-1055T and Arg130Gln in IL13, and Ile50Val, Ser478Pro and Gln551Arg in IL4RA, in a case-control study of 265 patients with PER and 275 healthy controls.

Results

We found that the CT/CC genotypes in IL4 C-590T were associated with a significantly decreased risk of mite-sensitized PER [adjusted odds ratio (OR)  = 0.64, 95% confidence interval (CI) 0.45–0.92], compared to the TT genotype. Furthermore, PER patients with CT/CC genotypes had significantly lower serum levels of total IgE than those with TT genotype (P = 0.001). However, there was no significant association of the IL13 and IL4RA polymorphisms with mite-sensitized PER (P>0.05).

Conclusions

Our results suggest that the C-590T polymorphism in IL4 may contribute to the susceptibility to mite-sensitized PER in a Chinese population.  相似文献   

10.

Background

For a good probiotic candidate, the abilities to adhere to intestinal epithelium and to fortify barrier function are considered to be crucial for colonization and functionality of the strain. The strain Lactobacillus acidophilus LAB20 was isolated from the jejunum of a healthy dog, where it was found to be the most pre-dominant lactobacilli. In this study, the adhesion ability of LAB20 to intestinal epithelial cell (IECs) lines, IECs isolated from canine intestinal biopsies, and to canine, porcine and human intestinal mucus was investigated. Further, we studied the ability of LAB20 to fortify the epithelial cell monolayer and to reduce LPS-induced interleukin (IL-8) release from enterocytes.

Results

We found that LAB20 presented higher adhesion to canine colonic mucus as compared to mucus isolated from porcine colon. LAB20 showed adhesion to HT-29 and Caco-2 cell lines, and importantly also to canine IECs isolated from canine intestinal biopsies. In addition, LAB20 increased the transepithelial electrical resistance (TER) of enterocyte monolayers and thus strengthened the intestinal barrier function. The strain showed also anti-inflammatory capacity in being able to attenuate the LPS-induced IL-8 production of HT-29 cells.

Conclusion

In conclusion, canine indigenous strain LAB20 is a potential probiotic candidate for dogs adhering to the host epithelium and showing intestinal barrier fortifying and anti-inflammatory effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-014-0337-9) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.

Methodology/Principal Findings

Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.

Conclusion

Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.  相似文献   

12.
Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in response to bacterial infection, thus protecting cells from the deleterious effects of F4+ ETEC.  相似文献   

13.

Objectives

Dengue represents one of the most serious life-threatening vector-borne infectious diseases that afflicts approximately 50 million people across the globe annually. Whilst symptomatic infections are frequently reported, asymptomatic dengue remains largely unnoticed. Therefore, we sought to investigate the immune correlates conferring protection to individuals that remain clinically asymptomatic.

Methods

We determined the levels of neutralizing antibodies (nAbs) and gene expression profiles of host immune factors in individuals with asymptomatic infections, and whose cognate household members showed symptoms consistent to clinical dengue infection.

Results

We observed broad down-regulation of host defense response (innate, adaptive and matrix metalloprotease) genes in asymptomatic individuals as against symptomatic patients, with selective up-regulation of distinct genes that have been associated with protection. Selected down-regulated genes include: TNF α (TNF), IL8, C1S, factor B (CFB), IL2, IL3, IL4, IL5, IL8, IL9, IL10 and IL13, CD80, CD28, and IL18, MMP8, MMP10, MMP12, MMP15, MMP16, and MMP24. Selected up-regulated genes include: RANTES (CCL5), MIP-1α (CCL3L1/CCL3L3), MIP-1β (CCL4L1), TGFβ (TGFB), and TIMP1.

Conclusion

Our findings highlight the potential association of certain host genes conferring protection against clinical dengue. These data are valuable to better explore the mysteries behind the hitherto poorly understood immunopathogenesis of subclinical dengue infection.  相似文献   

14.
15.
16.
17.

Background

We previously identified a MUC5B gene promoter-variant that is a risk allele for sporadic and familial Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia (IPF/UIP). This allele was strongly associated with increased MUC5B gene expression in lung tissue from unaffected subjects. Despite the strong association of this airway epithelial marker with disease, little is known of mucin expressing structures or of airway involvement in IPF/UIP.

Methods

Immunofluorescence was used to subtype mucus cells according to MUC5B and MUC5AC expression and to identify ciliated, basal, and alveolar type II (ATII) cells in tissue sections from control and IPF/UIP subjects. Staining patterns were quantified for distal airways (Control and IPF/UIP) and in honeycomb cysts (HC).

Results

MUC5B-expressing cells (EC) were detected in the majority of control distal airways. MUC5AC-EC were identified in half of these airways and only in airways that contained MUC5B-EC. The frequency of MUC5B+ and MUC5AC+ distal airways was increased in IPF/UIP subjects. MUC5B-EC were the dominant mucus cell type in the HC epithelium. The distal airway epithelium from control and IPF/UIP subjects and HC was populated by basal and ciliated cells. Most honeycombing regions were distinct from ATII hyperplasic regions. ATII cells were undetectable in the overwhelming majority of HC.

Conclusions

The distal airway contains a pseudostratified mucocilary epithelium that is defined by basal epithelial cells and mucus cells that express MUC5B predominantly. These data suggest that the HC is derived from the distal airway.  相似文献   

18.
19.

Background

Mammographic density (MD) has been found to be an independent risk factor for breast cancer. Although data from twin studies suggest that MD has a strong genetic component, the exact genes involved remain to be identified. Alterations in stromal composition and the number of epithelial cells are the most predominant histopathological determinants of mammographic density. Interactions between the breast stroma and epithelium are critically important in the maturation and development of the mammary gland and the cross-talk between these cells are mediated by paracrine growth factors and cytokines. The potential impact of genetic variation in growth factors and cytokines on MD is largely unknown.

Methods

We investigated the association between 89 single nucleotide polymorphisms (SNPs) in 7 cytokine/growth-factor genes (FGFR2, IGFBP1, IGFBP3, TGFB1, TNF, VEGF, IL6) and percent MD in 301 premenopausal women (aged 50 to 55 years) participating in the Norwegian Breast Cancer Screening Program. We evaluated the suggestive associations in 216 premenopausal Singapore Chinese Women of the same age.

Results

We found statistically significant associations between 9 tagging SNPs in the IL6 gene and MD in Norwegian women; the effect ranged from 3–5% in MD per variant allele (p-values = 0.02 to 0.0002). One SNP in the IL6 (rs10242595) significantly influenced MD in Singapore Chinese women.

Conclusion

Genetic variations in IL6 may be associated with MD and therefore may be an indicator of breast cancer risk in premenopausal women.  相似文献   

20.

Background

Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in developing countries, where it accounts for millions of infections and hundreds of thousands of deaths annually. While vaccine development to prevent diarrheal illness due to ETEC is feasible, extensive effort is needed to identify conserved antigenic targets. Pathogenic Escherichia coli, including ETEC, use the autotransporter (AT) secretion mechanism to export virulence factors. AT proteins are comprised of a highly conserved carboxy terminal outer membrane beta barrel and a surface-exposed amino terminal passenger domain. Recent immunoproteomic studies suggesting that multiple autotransporter passenger domains are recognized during ETEC infection prompted the present studies.

Methodology

Available ETEC genomes were examined to identify AT coding sequences present in pathogenic isolates, but not in the commensal E. coli HS strain. Passenger domains of the corresponding autotransporters were cloned and expressed as recombinant antigens, and the immune response to these proteins was then examined using convalescent sera from patients and experimentally infected mice.

Principal Findings

Potential AT genes shared by ETEC strains, but absent in the E. coli commensal HS strain were identified. Recombinant passenger domains derived from autotransporters, including Ag43 and an AT designated pAT, were recognized by antibodies from mice following intestinal challenge with H10407, and both Ag43 and pAT were identified on the surface of ETEC by flow cytometry. Likewise, convalescent sera from patients with ETEC diarrhea recognized Ag43 and pAT, suggesting that these proteins are expressed during both experimental and naturally occurring ETEC infections and that they are immunogenic. Vaccination of mice with recombinant passenger domains from either pAT or Ag43 afforded protection against intestinal colonization with ETEC.

Conclusions

Passenger domains of conserved autotransporter proteins could contribute to protective immune responses that develop following infection with ETEC, and these antigens consequently represent potential targets to explore in vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号