首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a viscometric affinity biosensor for continuous monitoring of glucose in biological fluids such as blood and plasma. The sensing principle of this chemico-mechanical sensor is based upon the viscosity variation of a sensitive fluid with glucose concentration. Basically, this device includes both an actuating and a sensing piezoelectric diaphragms as well as a flow-resistive microchannel. In order to confine the sensitive fluid and allow glucose diffusion into the sensor, a free-standing alumina nanoporous membrane is also used as size-selective interface. Measurements carried out at nominal temperatures of 25 and 37 °C reveal that this sensor topology exhibits a high resolution in the current range of physiological blood glucose concentrations, i.e. 2-20 mM. In addition, complete reversibility was also demonstrated for at least 3 days. Finally, measurements performed in human blood serum confirm that this sensor fulfils all basic requirements for a use in continuous glucose monitoring of biological fluids.  相似文献   

2.
Microarray analysis requires complex optical instruments and numerous reagents. Several new electrochemical methods for creating sequence-selective microlocations are emerging; such approaches potentially facilitate electrochemical (electronic) readouts of microarrays. These developments parallel the migration of glucose sensing in diabetes monitoring from optical to electrochemical methods. Recent work provides a strategy that minimizes the use of added reagents and potentially produces a reusable sensor that can be applied to continuous monitoring applications.  相似文献   

3.
Zwitterionic hydrogels based on poly(carboxybetaine) methacrylate (polyCBMA) were developed to protect implantable electrochemical glucose biosensors from biofouling in complex media. To enhance the linearity and sensitivity of the sensing profile, both physical and chemical adsorption methods were developed. Results show that glucose sensors coated with polyCBMA hydrogels via the chemical method achieve very high sensitivity and good linearity in response to glucose in PBS, 10%, 50%, and 100% human blood serum. Essentially identical glucose signals were observed even after prolonged exposure to blood samples for over 12 days. The excellent performance of polyCBMA hydrogel coating offers great promise for designing biocompatible implantable glucose biosensors in biological medium.  相似文献   

4.
The polyaniline (PANi)-Nafion composite film was prepared onto the ceramic plate by the cyclic voltammetry (CV) method with the various cycle numbers. When the PANi-Nafion/Au/ceramic plate with the preparing cycle number of 5 was as working electrode, the cathodic peak current was achieved as 84.0 microA in 60 mg dl(-1) NH4Cl buffer solution. On the other hand, the small cathodic peak currents for buffer solution in the presence of 60 mg dl(-1) LiOH, NaCl and KCl, respectively, were found with the same composite electrode as working electrode. The cathodic peak current decreased from 84.0 to 16.3 microA in the 60 mg dl(-1) NH4Cl buffer solution when the cycle number for preparing PANi-Nafion/Au/ceramic plate composite electrode with the CV method increased from 5 to 15. The enzyme of urease was immobilized onto the PANi-Nafion/Au/ceramic plate composite film by the electrochemical immobilization and the casting methods and used as sensing electrode to detect the concentration of urea in the buffer solution. The sensitivity of composite electrode immobilized with the casting method was greater than that of electrochemical immobilization method. The sensitivity and the detecting limit of the urea sensor were found to be 0.7 and 5.27 microA (mg dl(-1))(-1)cm(-2), as well as 6 and 0.3 mg dl(-1), respectively, when urease was immobilized by glutaraldehyde (GA) cross-linker and Nafion network, respectively.  相似文献   

5.
In this study, we investigated the activity, stability, lifetime and re-usability of monoclonal antibodies to myoglobin covalently immobilised onto microfabricated cantilever surfaces. These sensing surfaces are of interest to us in the development of novel cantilever-based immunosensors. For such sensors the antibody layer represents the sensing element while the microcantilever acts as a mechanical transducer. A procedure for producing re-usable biological coatings has been tested with different independent techniques. An Enzyme Linked Immunosorbent Assay (ELISA) was used to determine the presence of an active antibody coating, and to monitor the lifetime and stability of the immobilised antibody. Through this analysis, the activity of the immobilised antibody layer was found to be more stable with the introduction of sucrose, as a stabilising agent. Sucrose was applied to the immobilised antibody layer after each regeneration step. The immobilised antibody was found to have a stable active lifetime for up to 7 weeks. Fluorescence microscopy was used to give information on the distribution of the coating on the gold and silicon nitride sides of the cantilever. Atomic Force Microscopy was used to determine the presence of the biological coating on the cantilever and to obtain information on the surface morphology of the biological element of the sensor. The combined results provide valuable information on the development of an optimised sensing element and demonstrate a set of methods to use for future sensor-to-sensor characterisation. Preliminary experimental results showing the antibody activity against myoglobin, detected with a microcantilever based sensor prototype confirmed the motivations and potentialities of the proposed immunosensing technique.  相似文献   

6.
目的 植入式脑机接口在神经疾病的治疗方面已经得到了广泛应用,治疗的效果依赖于与神经组织接触的电极。与刚性材料制作的电极相比,碳基微纤维电极尺度小、生物兼容性好、组织炎症反应小,可以减少植入后的异物反应,改善神经记录信号的信噪比,可以长期保持稳定的电极特性。方法 本文设计了一种柔性碳纳米管(carbon nanotubes,CNTs)纤维电极的修饰方法,该方法采用电化学聚合的方式可以将聚3,4-乙烯二氧噻吩(poly(3,4-ethylenedioxythiophene),PEDOT)薄膜沉积到CNTs纤维电极上,作为微电极涂层。为了证明修饰涂层在电极表面具有良好的机械稳定性,对修饰电极进行了超声处理。此外,本文将PEDOT薄膜沉积到ITO玻璃上,评价了PEDOT薄膜的生物相容性。结果 恒电流方式在CNTs纤维电极表面沉积的PEDOT涂层降低了电极的电化学阻抗,提高了电极的电化学性能,且PEDOT沉积的时间越长阻抗减少的幅度越明显。对电极进行超声处理后,电极的电化学阻抗没有产生显著变化,说明超声处理后PEDOT涂层剥离较少,证明了修饰涂层在电极表面具有良好的机械稳定性。最后,细胞实验表明,PEDOT薄膜具有与ITO导电玻璃相当的细胞相容性。结论 PEDOT薄膜可以提高CNTs纤维电极的稳定性,有望提高脑机接口系统的寿命和可靠性,具有应用于长时间记录神经电信号的前景。  相似文献   

7.
《Endocrine practice》2008,14(7):880-883
ObjectiveTo describe the successful use of a continuous glucose monitor in the management of a patient with inoperable metastatic insulinoma.MethodsWe present a case of inoperable recurrent metastatic insulinoma in which medical therapy failed to relieve symptoms of dangerous hypoglycemia. We describe how the use of a continuous glucose monitor has assisted in avoiding hypoglycemia and improving her quality of life.ResultsA 70-year-old woman with a history of recurrent surgically treated insulinoma presented with recurrent hypoglycemia secondary to multiple metastases in the liver. Diazoxide therapy decreased the frequency of symptoms, but she continued to have hypoglycemic episodes resulting in frequent visits to the emergency department. Since starting to use a continuous glucose monitor, she has been able to avoid hypoglycemia with associated neuroglycopenic symptoms. While the accuracy of the device was poor when compared with conventional fingerstick monitors, the sensor tended to read higher than the meter in the hypoglycemic range. Although this led to more frequent false-positive hypoglycemic alarms, true episodes of severe hypoglycemia were rare.ConclusionsMalignant insulinomas are rare tumors. Many affected patients have disease that is unresectable, and medical therapy is limited in its ability to prevent hypoglycemic episodes. We have demonstrated that a continuous glucose monitor can be a useful adjunct to therapy to reduce hypoglycemic episodes by alerting the patient to low glucose concentrations before the development of neuroglycopenic symptoms. (Endocr Pract. 2008;14:880-883)  相似文献   

8.
Despite clear evidence that polymeric nitric oxide (NO) release coatings reduce the foreign body response (FBR) and may thus improve the analytical performance of in vivo continuous glucose monitoring devices when used as sensor membranes, the compatibility of the NO release chemistry with that required for enzymatic glucose sensing remains unclear. Herein, we describe the fabrication and characterization of NO-releasing polyurethane sensor membranes using NO donor-modified silica vehicles embedded within the polymer. In addition to demonstrating tunable NO release as a function of the NO donor silica scaffold and polymer compositions and concentrations, we describe the impact of the NO release vehicle and its release kinetics on glucose sensor performance.  相似文献   

9.
近年来纳米材料的不断引入,为生物传感技术提供了新的研究途径,大大提高了生物传感器的性能。其中,二硫化钼(MoS2)纳米材料由于比表面积大、带隙可调、电子迁移率高等独特性质,在生物传感器中被广泛应用。本文首先介绍了基于MoS2纳米材料的电化学、场效应晶体管、表面增强拉曼散射、比色、双模式生物传感器的基本原理、研究进展及性能对比,重点分析了MoS2纳米复合材料的结构、组分等对传感器灵敏度、检测范围、检测限、特异性等性能的影响,总结了MoS2生物传感器的优势并对其未来发展趋势进行了展望,为MoS2生物传感器在生物检测领域的进一步应用以及未来研究方向提供了思路。  相似文献   

10.
BackgroundWolbachia is an endosymbiont bacterium generally found in about 40% of insects, including mosquitoes, but it is absent in Aedes aegypti which is an important vector of several arboviral diseases. The evidence that Wolbachia trans-infected Ae. aegypti mosquitoes lost their vectorial competence and became less capable of transmitting arboviruses to human hosts highlights the potential of using Wolbachia-based approaches for prevention and control of arboviral diseases. Recently, release of Wolbachia trans-infected Ae. aegypti has been deployed widely in many countries for the control of mosquito-borne viral diseases. Field surveillance and monitoring of Wolbachia presence in released mosquitoes is important for the success of these control programs. So far, a number of studies have reported the development of loop mediated isothermal amplification (LAMP) assays to detect Wolbachia in mosquitoes, but the methods still have some specificity and cost issues.Methodology/Principal findingsWe describe here the development of a LAMP assay combined with the DNA strand displacement-based electrochemical sensor (BIOSENSOR) method to detect wAlbB Wolbachia in trans-infected Ae. aegypti. Our developed LAMP primers used a low-cost dye detecting system and 4 oligo nucleotide primers which can reduce the cost of analysis while the specificity is comparable to the previous methods. The detection capacity of our LAMP technique was 1.4 nM and the detection limit reduced to 2.2 fM when combined with the BIOSENSOR. Our study demonstrates that a BIOSENSOR can also be applied as a stand-alone method for detecting Wolbachia; and it showed high sensitivity when used with the crude DNA extracts of macerated mosquito samples without DNA purification.Conclusions/SignificanceOur results suggest that both LAMP and BIOSENSOR, either used in combination or stand-alone, are robust and sensitive. The methods have good potential for routine detection of Wolbachia in mosquitoes during field surveillance and monitoring of Wolbachia-based release programs, especially in countries with limited resources.  相似文献   

11.

Facile synthesis of L-tyrosine-capped silver nanoparticles (Tyr-AgNPs) was carried out, and its linear and nonlinear optical properties were investigated. Further, the sensing properties of Tyr-AgNPs toward dopamine were explored. Tyr-AgNPs exhibit a decrease in fluorescence intensity while a linear increase in absorption spectrum against increase in dopamine (DA) concentration (0–50 μM) at room temperature. Tyr-AgNPs are used as the sensing material for the fabrication of fiber optic dopamine sensor. Sensitivity, selectivity, and limit of detection of the sensor are evaluated. This proposed fiber optic sensor may offer sensitive and low-cost strategy for DA detection.

  相似文献   

12.
BackgroundThe global epidemic of Type-2-Diabetes (T2D) highlights the need for novel therapeutic targets and agents. Roux-en-Y-Gastric-Bypass (RYGB) is the most effective treatment. Studies investigating the mechanisms of RYGB suggest a role for post-operative changes in portal glucose levels. We investigate the impact of stimulating portal glucose sensors on systemic glucose levels in health and T2D, and evaluated the role of sodium-glucose-cotransporter-3 (SGLT3) as the possible sensor.MethodsSystemic glucose and hormone responses to portal stimulation were measured. In Sprague-Dawley (SD) rats, post-prandial state was simulated by infusing glucose into the portal vein. The SGLT3 agonist, alpha-methyl-glucopyranoside (αMG), was then added to further stimulate the portal sensor. To elucidate the neural pathway, vagotomy or portal denervation was followed by αMG+glucose co-infusion. The therapeutic potential of portal glucose sensor stimulation was investigated by αMG-only infusion (vs. saline) in SD and Zucker-Diabetic-Fatty (ZDF) rats. Hepatic mRNA expression was also measured.ResultsαMG+glucose co-infusion reduced peak systemic glucose (vs. glucose alone), and lowered hepatic G6Pase expression. Portal denervation, but not vagotomy, abolished this effect. αMG-only infusion lowered systemic glucose levels. This glucose-lowering effect was more pronounced in ZDF rats, where portal αMG infusion increased insulin, C-peptide and GIP levels compared to saline infusions.ConclusionsThe portal vein is capable of sensing its glucose levels, and responds by altering hepatic glucose handling. The enhanced effect in T2D, mediated through increased GIP and insulin, highlights a therapeutic target that could be amenable to pharmacological modulation or minimally-invasive surgery.  相似文献   

13.
【背景】传统抑菌剂的大量使用导致细菌产生多重耐药性与抗性,而基于细菌群体感应靶点调控的新型抑菌剂可缓解细菌耐药性与抗性,是未来抑菌剂的发展方向之一。【目的】研究连翘(Forsythiasuspensa)提取物对嗜水气单胞菌(Aeromonashydrophila)群体感应系统的影响及可能的作用机制,为新型抑菌剂的开发提供理论依据。【方法】以紫色杆菌(Chromobacterium violaceum)CV026为报告菌株,以嗜水气单胞菌为供试菌株,采用倍比稀释法测定连翘提取物对2种菌的最小抑菌浓度(minimal inhibitory concentration,MIC),通过微量法测定提取物对嗜水气单胞菌生长、群集运动及蛋白酶活性的影响,利用高效液相色谱串联质谱法分析提取物中的主要成分,采用分子对接模拟探究提取物对嗜水气单胞菌群体感应系统的作用机制。【结果】连翘提取物对紫色杆菌CV026和嗜水气单胞菌的MIC均为16.00mg/mL。在亚抑菌浓度下,连翘提取物处理显著抑制了CV026紫色菌素的产生,最大抑制率高达56.30%。经8.00mg/mL连翘提取物处理后,嗜水气单胞菌的群集运...  相似文献   

14.
BackgroundGold nanoparticles (AuNPs) with unique physicochemical properties have received a great deal of interest in the field of biological, chemical and biomedical implementations. Despite the widespread use of AuNPs in chemical and biological sensing, catalysis, imaging and diagnosis, and more recently in therapy, no comprehensive summary has been provided to explain how AuNPs could aid in developing improved sensing and catalysts systems as well as medical settings.Scope of reviewThe chemistry of Au-based nanosystems was followed by reviewing different applications of Au nanomaterials in biological and chemical sensing, catalysis, imaging and diagnosis by a number of approaches, and finally synergistic combination therapy of different cancers. Afterwards, the clinical impacts of AuNPs, future application of AuNPs, and opportunities and challenges of AuNPs application were also discussed.Major conclusionsAuNPs show exclusive colloidal stability and are considered as ideal candidates for colorimetric detection, catalysis, imaging, and photothermal transducers, because their physicochemical properties can be tuned by adjusting their structural dimensions achieved by the different manufacturing methods.General significanceThis review provides some details about using AuNPs in sensing and catalysis applications as well as promising theranostic nanoplatforms for cancer imaging and diagnosis, and sensitive, non-invasive, and synergistic methods for cancer treatment in an almost comprehensive manner.  相似文献   

15.
Periodic checks of fish health and the rapid detection of abnormalities are thus necessary at fish farms. Several studies indicate that blood glucose levels closely correlate to stress levels in fish and represent the state of respiratory or nutritional disturbance. We prepared a wireless enzyme sensor system to determine blood glucose levels in fish. It can be rapidly and conveniently monitored using the newly developed needle-type enzyme sensor, consisting of a Pt-Ir wire, Ag/AgCl paste, and glucose oxidase. To prevent the effects of interfering anionic species, such as uric acid and ascorbic acid, on the sensor response, the Pt-Ir electrode was coated with Nafion, and then glucose oxidase was immobilized on the coated electrode. The calibration curve of the glucose concentration was linear, from 0.18 to 144mg/dl, and the detection limit was 0.18mg/dl. The sensor was used to wirelessly monitor fish glucose levels. The sensor-calibrated glucose levels and actual blood glucose levels were in excellent agreement. The fluid of the inner sclera of the fish eyeball (EISF) was a suitable site for sensor implantation to obtain glucose sample. There was a close correlation between glucose concentrations in the EISF and those in the blood. Glucose concentrations in fish blood could be monitored in free-swimming fish in an aquarium for 3 days.  相似文献   

16.
Microdialysis probes have been used for diabetes treatment as continuous monitoring system coupled to a glucose sensor. An on-chip microdialysis system with in-line sensing electrodes is demonstrated. As a first step towards greater biosensor integration with this miniaturized microdialysis system, a stacked system with in-line sensing electrodes was developed. Impedance electrodes sputtered within the microchannels were used to determine fluid electrical resistance from a dialyzed phosphate buffered saline (PBS) solution, which characterizes solution conductivity as a function of PBS concentration. The permeability of the membrane to the salt ions was obtained as 0.246+/-0.028 microm/s (15 nm pores). Subsequently, experiments measuring PBS dialysis in the time-domain at 64.4% recovery were conducted. The PBS concentration of the reservoir was changed in both a step response and sinusoidally with an 800 s period. The subsequently measured impedance indicates that the system is able to continuously track concentration changes in the reservoir with a 210 s system response delay. Most of this delay is due to the dead volume within the tubing between the syringe pumps and the microsystem. In addition, the predicted response was modeled using linear systems theory and matches the experimental measurements (r=0.98). This system is expected to have the proper sensitivity to track physiologically relevant concentration changes of biomolecules such as glucose (which has a physiological maximum change rate of approximately 4 mg/dl min with a periodicity of 1h or greater) with minimal lag time and amplitude reduction.  相似文献   

17.
A novel design of a biochemical oxygen demand (BOD) biosensor has been developed for on-line monitoring of easily biodegradable organic compounds in aqueous samples. The biological recognition element of the sensor could be easily renewed by injecting new bacterial paste without disassembling the sensor system. The sensor measurements were carried out in the initial-rate mode using a flow injection (FI) system, resulting in 60 s for one sample analysis followed by a recovery time less than 10 min. The sensor performance achieved showed a wide detection linearity over the range of 5-700 mg BOD5.l(-1) and a generally good agreement between the BOD values estimated by the biosensor and the conventional 5-day test. Furthermore, the precision test was in the control range (i.e. repeatability < or = /+/-7.5%/, reproducibility < or = /+/-7.3%/). The sensor could be used over 1 week in continuous test, however, the best performance was found within the first 24 h where standard deviation of the sensor response was +/-2.4%. The design of the sensor allows easy and fast renewal of the cells used as sensing elements. Replacement of biological recognition element and calibration of the sensor responses can be performed in a rather simple procedure on a daily regular basis. By using a mixed culture as the bio-receptor, one gets a sensor that reacts to a wide range of substrates. The new sensor construction will thus allow fast and convenient replacement of the bio-receptor and on-line assay of a broad range of substrates. This makes the sensor being an interesting and promising candidate for on-line monitoring of biological treatment process.  相似文献   

18.
The electrochemical performance of a new glucose biosensor is reported. The glucose biosensor is developed using glucose oxidase (GOD) and ferrocene encapsulated palladium (Pd)-linked organically modified sol-gel glass (ORMOSIL) material incorporated within graphite paste electrode. The ORMOSIL material incorporated within graphite paste electrode behaves as an excellent electrocatalyst for the oxidation of enzymatically reduced GOD. The electrochemical behavior of new glucose biosensor has been examined by cyclic volammetry and amperometric measurements. The bioelectrocatalysis of ORMOSIL embedded within graphite paste as a function of storage time and varying concentration of ORMOSIL is reported. The initial amperometric response on glucose sensing is recorded to be 145 microA at 15% (w/w) concentration of the ORMOSIL which is decreased to 20 microA at 5% of the same keeping GOD concentration constant. The variation of electrochemical behavior of the ORMOSIL embedded within graphite paste as a function of time has also been studied based on cyclic voltammetry. The voltammograms showing the reversible electrochemistry of ORMOSIL encapsulated ferrocene is changed into a plateau shape as a function of time, however, the electrocatalytic behavior is still retained. The practical usability of new glucose sensor has been compared with earlier developed glucose sensor. The sensitivity, response time and linearity of the new glucose biosensor are found to be excellent over earlier reported glucose biosensor. The amperometric response, calibration curve and practical applications of new glucose sensor are reported.  相似文献   

19.

In this paper, a plasmonic perfect absorber (PPA) based on metal-insulator-metal-insulator-metal (MIMIM) structure has been designed for refractive index sensing of glucose solutions (analyte) and then a new method has been proposed for fast, low-cost, and easy measurement of sensor’s sensitivity. Simulation results show that the absorption spectrum of the proposed sensor has two resonance peaks that with an increase in analyte refractive index, both of them are red-shifted. In our proposed measurement technique, two conventional single-wavelength lasers (with wavelengths of 1050 nm and 1750 nm) are used for vertical plane wave light illumination on the structure. Then, the absorbed powers at 1750 nm (A2) and 1050 nm (A1) wavelengths are calculated and variation of the absorption ratio (A2/A1) due to change of analyte refractive index would be introduced as the sensitivity of sensor (S = Δ(A2/A1)/Δn). Obtained results show that the increase of analyte refractive index from n = 1.312 to n = 1.384 will result in an increase of sensor’s sensitivity from 9.3/RIU to 33.475/RIU.

  相似文献   

20.
Pure nickel electrodes can be used as biosensors especially for sensing and estimating acetylcholine neurotransmitter. In the present work, a good electrochemical sensor was developed by electroplating nano nickel oxide reinforced nickel on graphite substrate. The morphology of the working electrode surface was studied by using a scanning electron microscope (SEM). The electrochemical and biological performance of the modified electrode was characterized by polarization studies in different media. The present modified electrode showed good sensing performance with a response time as low as 8s during sensing and estimation of acetylcholine. The sensitivity of the modified electrode was 34.88 microA/(microM cm(2)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号