首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell division, differentiation and morphogenesis are coordinated during embryonic development, and frequently are in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but that undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and use the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is driven substantially by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression, and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1(-/-). The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize, as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for the normal segmental arrangement of epithelial borders and internal mesenchymal cells.  相似文献   

2.
Unlike many mutants that are completely viable or inviable, the CLB2-dbΔ clb5Δ mutant of Saccharomyces cerevisiae is inviable in glucose but partially viable on slower growth media such as raffinose. On raffinose, the mutant cells can bud and divide but in each cycle there is a chance that a cell will fail to divide (telophase arrest), causing it to exit the cell cycle. This effect gives rise to a stochastic phenotype that cannot be explained by a deterministic model. We measure the interbud times of wild-type and mutant cells growing on raffinose and compute statistics and distributions to characterize the mutant''s behavior. We convert a detailed deterministic model of the budding yeast cell cycle to a stochastic model and determine the extent to which it captures the stochastic phenotype of the mutant strain. Predictions of the mathematical model are in reasonable agreement with our experimental data and suggest directions for improving the model. Ultimately, the ability to accurately model stochastic phenotypes may prove critical to understanding disease and therapeutic interventions in higher eukaryotes.Key words: stochastic phenotype, mitotic exit, non-genetic variability, cell cycle modeling, computational biology, stochastic modeling, deterministic modeling  相似文献   

3.
4.
5.
The p21-activated kinases Ste20p and Cla4p carry out undefined functions that are essential for viability during budding in Saccharomyces cerevisiae. To gain insight into the roles of Ste20p, we have used a synthetic lethal mutant screen to identify additional genes that are required in the absence of Cla4p. Altogether, we identified 65 genes, including genes with roles in cell polarity, mitosis, and cell wall maintenance. Herein, we focus on a set that defines a function carried out by Bni1p and several of its interacting proteins. We found that Bni1p and a group of proteins that complex with Bni1p (Bud6p, Spa2p, and Pea2p) are essential in a cla4delta mutant background. Bni1p, Bud6p, Spa2, and Pea2p are members of a group of polarity determining proteins referred to as the polarisome. Loss of polarisome proteins from a cla4delta strain causes cells to form elongated buds that have mislocalized septin rings. In contrast, other proteins that interact with or functionally associate with Bni1p and have roles in nuclear migration and cytokinesis, including Num1p and Hof1p, are not essential in the absence of Cla4p. Finally, we have found that Bni1p is phosphorylated in vivo, and a substantial portion of this phosphorylation is dependent on STE20. Together, these results suggest that one function of Ste20p may be to activate the polarisome complex by phosphorylation of Bni1p.  相似文献   

6.
Bud6p is a component of a polarisome that controls cell polarity in Saccharomyces cerevisiae. In this study, we investigated the role of the Candida albicans Bud6 protein (CaBud6p) in cell polarity and hyphal development. CaBud6p, which consists of 703 amino acids, had 37% amino-acid sequence identity with the Bud6 protein of S. cerevisiae. The homozygous knock-out of CaBUD6 resulted in several abnormal phenotypes, such as a round and enlarged cells, widened bud necks, and a random budding pattern. In hypha-inducing media, the mutant cells had markedly swollen tips and a reduced ability to switch from yeast to hypha. In addition, a yeast two-hybrid analysis showed a physical interaction between CaBud6p and CaAct1p, which suggests that CaBud6p may be involved in actin cable organization, like Bud6p in S. cerevisiae. Taken together, these results indicate that CaBud6 plays an important role in the polarized growth of C. albicans.  相似文献   

7.
8.
Phenotypic cell-to-cell variability or cell population heterogeneity originates from two fundamentally different sources: unequal partitioning of cellular material at cell division and stochastic fluctuations associated with intracellular reactions. We developed a mathematical and computational framework that can quantitatively isolate both heterogeneity sources and applied it to a genetic network with positive feedback architecture. The framework consists of three vastly different mathematical formulations: a), a continuum model, which completely neglects population heterogeneity; b), a deterministic cell population balance model, which accounts for population heterogeneity originating only from unequal partitioning at cell division; and c), a fully stochastic model accommodating both sources of population heterogeneity. The framework enables the quantitative decomposition of the effects of the different population heterogeneity sources on system behavior. Our results indicate the importance of cell population heterogeneity in accurately predicting even average population properties. Moreover, we find that unequal partitioning at cell division and sharp division rates shrink the region of the parameter space where the population exhibits bistable behavior, a characteristic feature of networks with positive feedback architecture. In addition, intrinsic noise at the single-cell level due to slow operator fluctuations and small numbers of molecules further contributes toward the shrinkage of the bistability regime at the cell population level. Finally, the effect of intrinsic noise at the cell population level was found to be markedly different than at the single-cell level, emphasizing the importance of simulating entire cell populations and not just individual cells to understand the complex interplay between single-cell genetic architecture and behavior at the cell population level.  相似文献   

9.
10.
Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities (‘noise’) inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ~800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ~10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects. Author summary Complex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need to generate a precise and robust pattern in this ‘noisy’ environment restricts the space of patterning mechanisms that can function in the biological setting. Mathematical modeling is useful in comparing the sensitivity of different mechanisms to such variations, thereby highlighting key aspects of their design.We use mathematical modeling to study the periodic patterning of the fruit fly eye. In this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters of ~10 cells that express specific genes. Each cluster is subsequently refined into a single cell, which initiates the formation and differentiation of a miniature eye unit, the ommatidium. We formulate a mathematical model based on the known molecular properties of the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster formation and refinement resulting from stochastic cell-to-cell variations (‘noise’) in different quantitative parameters. This enables us to define the parameters most influencing noise sensitivity. Notably, we find that this error is roughly independent of the desired cluster size, suggesting that large clusters are beneficial for ensuring the overall reproducibility of the periodic cluster arrangement. For the stage of cluster refinement, we find that rapid communication between cells is critical for reducing error. Our work provides new insights into the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy environment, and in particular, discusses the different considerations in achieving optimal design of the patterning network.  相似文献   

11.
Host-parasite systems provide powerful opportunities for the study of spatial and stochastic effects in ecology; this has been particularly so for directly transmitted microparasites. Here, we construct a fully stochastic model of the population dynamics of a macroparasite system: trichostrongylid gastrointestinal nematode parasites of farmed ruminants. The model subsumes two implicit spatial effects: the host population size (the spatial extent of the interaction between hosts) and spatial heterogeneity ('clumping') in the infection process. This enables us to investigate the roles of several different processes in generating aggregated parasite distributions. The necessity for female worms to find a mate in order to reproduce leads to an Allee effect, which interacts nonlinearly with the stochastic population dynamics and leads to the counter-intuitive result that, when rare, epidemics can be more likely and more severe in small host populations. Clumping in the infection process reduces the strength of this Allee effect, but can hamper the spread of an epidemic by making infection events too rare. Heterogeneity in the hosts' response to infection has to be included in the model to generate aggregation at the level observed empirically.  相似文献   

12.
We report that the hindsight (hnt) gene, which encodes a nuclear zinc-finger protein, regulates cell morphology, cell fate specification, planar cell polarity and epithelial integrity during Drosophila retinal development. In the third instar larval eye imaginal disc, HNT protein expression begins in the morphogenetic furrow and is refined to cells in the developing photoreceptor cell clusters just before their determination as neurons. In hnt mutant larval eye tissue, furrow markers persist abnormally posterior to the furrow, there is a delay in specification of preclusters as cells exit the furrow, there are morphological defects in the preclusters and recruitment of cells into specific R cell fates often does not occur. Additionally, genetically mosaic ommatidia with one or more hnt mutant outer photoreceptor cells, have planar polarity defects that include achirality, reversed chirality and misrotation. Mutants in the JNK pathway act as dominant suppressors of the hnt planar polarity phenotype, suggesting that HNT functions to downregulate JUN kinase (JNK) signaling during the establishment of ommatidial planar polarity. HNT expression continues in the photoreceptor cells of the pupal retina. When an ommatidium contains four or more hnt mutant photoreceptor cells, both genetically mutant and genetically wild-type photoreceptor cells fall out of the retinal epithelium, indicating a role for HNT in maintenance of epithelial integrity. In the late pupal stages, HNT regulates the morphogenesis of rhabdomeres within individual photoreceptor cells and the separation of the rhabdomeres of adjacent photoreceptor cells. Apical F-actin is depleted in hnt mutant photoreceptor cells before the observed defects in cellular morphogenesis and epithelial integrity. The analyses presented here, together with our previous studies in the embryonic amnioserosa and tracheal system, show that HNT has a general role in regulation of the F-actin-based cytoskeleton, JNK signaling, cell morphology and epithelial integrity during development.  相似文献   

13.
Despite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins. Both types of clones displayed strong heterogeneity of reporter gene expression levels. However, cells expressing stable gene products produced daughter cells with similar level of reporter proteins, while in cell clones with short mRNA and protein half-lives the epigenetic memory of the gene expression level was completely suppressed. Computer simulations also confirmed the role of mRNA and protein stability in the conservation of constant gene expression levels over several cell generations. These data indicate that the conservation of a stable phenotype in a cellular lineage may largely depend on the slow turnover of mRNA-s and proteins.  相似文献   

14.
The orientation of cell divisions determines the shape of Drosophila organs   总被引:6,自引:0,他引:6  
Organ shape depends on the coordination between cell proliferation and the spatial arrangement of cells during development. Much is known about the mechanisms that regulate cell proliferation, but the processes by which the cells are orderly distributed remain unknown. This can be accomplished either by random division of cells that later migrate locally to new positions (cell allocation) or through polarized cell division (oriented cell division; OCD). Recent data suggest that the OCD is involved in some morphogenetic processes such as vertebrate gastrulation, neural tube closure, and growth of shoot apex in plants; however, little is known about the contribution of OCD during organogenesis. We have analyzed the orientation patterns of cell division throughout the development of wild-type and mutant imaginal discs of Drosophila. Our results show a causal relationship between the orientation of cell divisions in the imaginal disc and the adult morphology of the corresponding organs, indicating a key role of OCD in organ-shape definition. In addition, we find that a subset of planar cell polarity genes is required for the proper orientation of cell division during organ development.  相似文献   

15.
Junctional adhesion molecule (JAM)-A is an integral membrane protein at tight junctions of epithelial cells which associates with the cell polarity protein PAR-3. Here, we demonstrate that downregulation of JAM-A impairs the ability of MDCK II cells to form cysts in a three-dimensional matrix indicating the requirement of JAM-A for the development of apico-basal polarity. To define the regions of JAM-A important for this function, we have generated MDCK II cell lines stably expressing inducible JAM-A mutants. Mutants of JAM-A which were designed to mislocalize strongly impaired the development of cysts and the formation of functional tight junctions. Surprisingly, similar mutants that lacked the PDZ domain-binding motif at the C-terminus were still impaired in apico-basal polarity formation suggesting that additional regions within the cytoplasmic tail of JAM-A are important for the function of JAM-A. A JAM-A mutant lacking the first Ig-like domain necessary for homophilic binding localized to cell-cell contacts similar to wild-type JAM-A. However, despite this same localization, this mutant interfered with cell polarity and tight junction formation. Together our findings suggest an important role for JAM-A in the development of apico-basal polarity in epithelial cells and identify regions in JAM-A which are critical for this role.  相似文献   

16.
Hyphal tip growth is a key feature of filamentous fungi, however, the molecular mechanism(s) that regulate cell polarity are poorly understood. On the other hand, much more is known about polarised growth in the yeast Saccharomyces cerevisiae. Here, the proteins Spa2p, Bni1p, Bud6p and Pea2p form a protein complex named the polarisome known to be important for the assurance of polar growth. We searched the genome of Aspergillus niger and identified homologues for Spa2p, Bni1p, Bud6p but not for Pea2p. We characterised the function of the Spa2p homologue SpaA by determining its cellular localisation and by constructing deletion and overexpressing mutant strains. SpaA was found to be localised exclusively at the hyphal tip, suggesting that SpaA can be used as marker for polarisation. Deletion and overexpression of spaA resulted in reduced growth rate, increased hyphal diameter and polarity defects, indicating that one of the functions of SpaA is to ensure polarity maintenance. In addition, we could show that SpaA is able to complement the defective haploid invasive growth phenotype of a S. cerevisiae SPA2 null mutant. We suggest that the function of SpaA is to ensure maximal polar growth rate in A. niger.  相似文献   

17.
Saccharomyces cerevisiae Spa2p is a component of polarisome that controls cell polarity. Here, we have characterized the role of its homologue, CaSpa2p, in the polarized growth in Candida albicans. During yeast growth, GFP-tagged CaSpa2p localized to distinct growth sites in a cell cycle-dependent manner, while during hyphal growth it persistently localized to hyphal tips throughout the cell cycle. Persistent tip localization of the protein was also observed in Catup1Delta and Canrg1Delta, mutants constitutive for filamentous growth. Caspa2Delta exhibited defects in polarity establishment and maintenance, such as random budding and failure to confine growth to a small surface area leading to round cells with wide, elongated bud necks and markedly thicker hyphae. It was also defective in nuclear positioning, presumably a result of defective interactions between cytoplasmic microtubules with certain polarity determinants. The highly conserved SHD-I and SHD-V domains were found to be important and responsible for different aspects of CaSpa2p function. Caspa2Delta exhibited no virulence in the mouse systemic candidiasis model. Because of the existence of distinct growth forms and the easy control of the switch between them in vitro, C. albicans may serve as a useful model in cell polarity research.  相似文献   

18.
D Hirata  H Masuda  M Eddison    T Toda 《The EMBO journal》1998,17(3):658-666
The main structural components of microtubules are alpha- and beta-tubulins. A group of proteins called cofactors are crucial in the formation of assembly-competent tubulin molecules in vitro. Whilst an in vitro role is emerging for these cofactors, their biological functions in vivo remain to be established. In order to understand the fundamental mechanisms that determine cell polarity, we have screened for fission yeast mutants with altered polarity. Here we show that alp1+ encodes a homologue of cofactor D and executes a function essential for cell viability. A temperature-sensitive alp1 mutant shows a variety of defects including abnormal mitoses, loss of microtubule structures, displacement of the nucleus, altered growth polarity and asymmetrical cell division. Overexpression of Alp1 is lethal in wild-type cells, resulting in altered cell shape, but is rescued by co-overexpression of beta-tubulin. Alp1 co-localizes with microtubules, both interphase arrays and mitotic spindles. Furthermore, Alp1 binds to and co-sediments with taxol (paclitaxel)-stabilized porcine microtubules. Our results suggest that, in addition to a function in the folding of beta-tubulin, cofactor D may play a vital role in microtubule-dependent processes as a microtubule-associated protein.  相似文献   

19.

Background

In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature.

Results

Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population is characterized by a dynamic equilibrium between “high CD56” and “low CD56” phenotype cells with distinct spatial distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the phenotypes until the low noise state is found.

Conclusions

These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions.  相似文献   

20.
Unlike many mutants that are completely viable or inviable, the CLB2-dbΔ clb5Δ mutant of Saccharomyces cerevisiae is inviable in glucose but partially viable on slower growth media such as raffinose. On raffinose, the mutant cells can bud and divide but in each cycle there is a chance that a cell will fail to divide (telophase arrest), causing it to exit the cell cycle. This effect gives rise to a stochastic phenotype that cannot be explained by a deterministic model. We measure the inter-bud times of wild type and mutant cells growing on raffinose and compute statistics and distributions to characterize the mutant’s behavior. We convert a detailed deterministic model of the budding yeast cell cycle to a stochastic model and determine the extent to which it captures the stochastic phenotype of the mutant strain. Predictions of the mathematical model are in reasonable agreement with our experimental data and suggest directions for improving the model. Ultimately, the ability to accurately model stochastic phenotypes may prove critical to understanding disease and therapeutic interventions in higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号