首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Modeling Habitat Change in Salt Marshes After Tidal Restoration   总被引:4,自引:0,他引:4  
Salt marshes continue to degrade in the United States due to indirect human impacts arising from tidal restrictions. Roads or berms with inadequate provision for tidal flow hinder ecosystem functions and interfere with self‐maintenance of habitat, because interactions among vegetation, soil, and hydrology within tidally restricted marshes prevent them from responding to sea level rise. Prediction of the tidal range that is expected after restoration relative to the current geomorphology is crucial for successful restoration of salt marsh habitat. Both insufficient (due to restriction) and excessive (due to subsidence and sea level rise) tidal flooding can lead to loss of salt marshes. We developed and applied the Marsh Response to Hydrological Modifications model as a predictive tool to forecast the success of management scenarios for restoring full tides to previously restricted areas. We present an overview of a computer simulation tool that evaluates potential culvert installations with output of expected tidal ranges, water discharges, and flood potentials. For three New England tidal marshes we show species distributions of plants for tidally restricted and nonrestricted areas. Elevation ranges of species are used for short‐term (<5 years) predictions of changes to salt marsh habitat after tidal restoration. In addition, elevation changes of the marsh substrate measured at these sites are extrapolated to predict long‐term (>5 years) changes in marsh geomorphology under restored tidal regimes. The resultant tidal regime should be designed to provide habitat requirements for salt marsh plants. At sites with substantial elevation losses a balance must be struck that stimulates elevation increases by improving sediment fluxes into marshes while establishing flooding regimes appropriate to sustain the desired plants.  相似文献   

2.
In seawater, several trace metals with biological significance are highly complexed with organic matter. Marine cyanobacteria are an important phytoplanktonic group, with the ability to release trace metal-binding compounds to the seawater medium, which in turn modulates their bioavailability and influences their biogeochemical cycles. Such interactions may allow cyanobacteria to more easily access less available trace metals essential for their metabolic processes, or, conversely, keep the toxic forms of the trace metals from reaching intolerable levels. In this minireview, Cu and Fe interactions with cyanobacteria received special attention, although other trace metals (Co, Pb, Zn, and Cd) are also covered. Recent research has shed light on many aspects of trace metal–cyanobacteria ecology in seawater; nevertheless, the biochemical processes behind this dynamics and the structure of the vast majority of the metal binding compounds remain unclear.  相似文献   

3.
Efforts to manage or prevent Phragmites australis invasion in salt and brackish marshes are complicated by the lack of a general causal role for specific human activities. The pattern of invasion within a marsh differs among sites, and each may have different causal histories. A review of the literature finds three establishment/invasion patterns: (1) from stands established on ditch- or creek-bank levees toward interior portions of high marshes, (2) from stands along upland borders toward high marsh interiors, and (3) centroid spread from high marsh stands established in ostensibly random locations. Each invasion pattern seems to have different anthropogenic precursors, therefore preventing generalizations about the role of any one human activity in all sites. However, historical and experimental evidence suggests that regardless of invasion pattern, establishment is much more likely at sites where rhizomes are buried in well-drained, low salinity marsh areas. Any human activity that buries large rhizomes, increases drainage, or lowers salinity increases chances of establishing invasive clones. To integrate these patterns and improve our understanding of the rapid spread of Phragmites, recent evidence has been synthesized into a dichotomous flow chart which poses questions about current site conditions and the potential for proposed activities to change site conditions that may facilitate invasion. This simple framework could help managers assess susceptibility and take preventative measures in coastal marshes before invasion occurs or before removal becomes very expensive.  相似文献   

4.
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.  相似文献   

5.
In recent years, salt marsh restoration projects have focused upon restoring hydrology through culvert enlargement to return functional values lost due to reduced tidal flow. To evaluate culvert effects on upstream nekton assemblages, fyke nets were set upstream of tidally restricted creeks, creeks recently restored with larger culverts, and paired reference creeks in New Hampshire and Maine, U.S.A. Subtidal habitats created or enlarged by scour were found immediately upstream of undersized culverts. All marshes supported similar assemblages and densities of fish, suggesting that marshes upstream of moderately restrictive culverts provide suitable habitat to support fish communities. However, densities of Crangon septemspinosa (sand shrimp) were significantly reduced upstream of culverts. A mark–recapture study was conducted in tidally restricted, restored, and reference marsh creeks to evaluate culvert effects on the movement of Fundulus heteroclitus (mummichog), the numerically dominant fish species in New England salt marshes. Recapture data indicated that small culvert size and consequently increased water velocity significantly decreased fish passage rates. We infer that upstream subtidal habitats and greater water velocities due to undersized culverts decreased nekton movements between upstream and downstream areas, resulting in segregated nekton populations. Restoration of salt marsh hydrology by the installation of adequately sized culverts will support increased fish access to marsh habitats and nekton‐mediated export of marsh‐derived production to coastal waters.  相似文献   

6.
The phenomenon of massive algae migrations to the surface of mud flats at low tide was quantitatively investigated. Differences were noted in the behavior of the individual species. This adaptation to the tidal rhythm is obviously effective for preventing the algae from drifting to the sea, and its development can shed much light on the natural history of the species involved. Euglena obtusa and Caloneis amphisbaena var. subsalina apparently arose by a natural selection process among ancestors from lentic freshwater bodies, while Navicula salinarum, Cylindrotheca signata, and several other diatoms probably invaded the freshwater habitat from marine mud flats, where they were preadapted to the tides.  相似文献   

7.
Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration.  相似文献   

8.
Ecosystems - Environmental changes can alter the interactions between biotic and abiotic ecosystem components in tidal wetlands and therefore impact important ecosystem functions. The objective of...  相似文献   

9.
Groundwater flow rates and nitrate removal capacity from an introduced solution were examined for five marsh restoration designs and unvegetated plots shortly after planting and 1 year post-planting. The restoration site was a sandy beach with a wave-dampening fence 10 m offshore. Simulated groundwater flow into the marsh was introduced at a rate to mimic intense rainfall events. Restoration designs varied in initial planting density and corresponded to 25%, 50%, 75% and 100% of the plot area planted. In general, groundwater flow was slower with increasing planting density and decreased from year 0 to year 1 across all treatments. Nevertheless, removal of nitrate from the introduced solution was similar and low for all restoration designs (3–7%) and similar to the unvegetated plots. We suggest that the low NO3 removal was due to sandy sediments allowing rapid flow of groundwater through the marsh rhizosphere, thereby decreasing the contact time of the NO3 with the marsh biota. Our findings demonstrate that knowledge of the groundwater flow regime for restoration projects is essential when nutrient filtration is a target goal of the project.  相似文献   

10.
We studied three different size classes of liana abundance representing proxies for three different life stages and aimed to identify the sequence of ecological filters that have led to current patterns of liana abundance. We tested the relationship between vegetation structure (including antagonistic support types) and soil texture on liana abundance, using 40 plots (1 and 0.25 ha) set at least 1 km apart, and distributed over 64 km2 in a Central Amazonian terra firme forest. Three support types were considered: palms, thin trees and an index of vegetation structure. Liana size classes responded hierarchically to ecological filters: larger size classes were progressively less associated with the environmental variables, while different aspects of vegetation structure were related to individual size classes. This hierarchical pattern suggests that selection mechanisms change throughout liana life cycles. Our results show that vegetation structure is an important predictor of liana abundance at a mesoscale and highlights the importance of considering the spatial structure in studies of tropical liana communities. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

11.
A growing understanding of antioxidant mechanisms and insulin-like actions of trace elements selenium and zinc has rekindled researchers’ interest towards their role in diabetes mellitus, nutritional management of which concentrates predominantly on macronutrient intake. However, selenium studies limiting largely to diabetes have yielded inconsistent results with sparse knowledge in the pre-diabetes population. This hospital-based cross-sectional study screened 300 people who came to the institutional hospital laboratory with fasting plasma glucose and glycosylated haemoglobin requisition over a period of 6 months. Thirty-five pre-diabetes subjects aged 25–45 years and 35 age-matched healthy controls were selected as per inclusion criteria and clinical history. Serum selenium was estimated by inductively coupled plasma-mass spectrometry, zinc and magnesium by colorimetric end-point methods and insulin by enzyme-linked immunosorbent assay, and insulin resistance was calculated using a homeostasis model assessment (HOMA) 2 calculator. Data analysis was done using SPSS ver. 16 employing an independent sample t test for intergroup comparison of means and Pearson’s correlation for correlation analysis. Serum mineral levels in the pre-diabetes group (selenium 63.01 ± 17.6 μg/L, zinc 55.78 ± 13.49 μg/dL, magnesium 1.37 ± 0.38 mg/dL) were significantly reduced (p < 0.05) in comparison to the healthy controls (selenium 90.98 ± 15.81 μg/L, zinc 94.53 ± 15.41 μg/dL, magnesium 2.12 ± 0.22 mg/dL). A significant negative correlation was seen with glycaemic indices and insulin resistance. This study conducted in pre-diabetes subjects highlights a considerable deficiency of serum selenium, zinc and magnesium observed at a much earlier pre-clinical phase. This coupled with the evidence of a strong inverse association with glycaemic indices and insulin resistance postulates the role of mineral alterations in the pathophysiology of hyperglycaemia and insulin resistance.  相似文献   

12.

Background

Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions. However, how the species richness affects trace metals removal of plant communities of mine tailing is rarely known.

Methodology/Principal Findings

We examined the effects of species richness on soil trace metal removal in both natural and experimental plant communities. The root lengths and stem heights of each plant species were measured in order to calculate the functional diversity indices. Our results showed that trace metal (Cu, Cd, Pb and Zn) concentrations in mine tailing soil declined as species richness increased in both the natural and experimental plant communities. Species richness, rather than functional diversity, positively affected the mineralomass of the experimental plant communities. The intensity of plant-plant facilitation increased with the species richness of experimental communities. Due to the incremental role of plant-plant facilitation, most of the species had higher biomasses, higher trace metal concentrations in their plant tissues and lower malondialdehyde concentrations in their leaves. Consequently, the positive effects of species richness on mineralomass were mostly attributable to facilitation among plants.

Conclusions/Significance

Our results provide clear evidence that, due to plant-plant facilitation, species richness positively affects the removal of trace metals from mine tailing soil through phytoextraction and provides further information on diversity conservation and environmental remediation in a mine tailing environment.  相似文献   

13.
The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.  相似文献   

14.
Assessing the response of salt marshes to tidal restoration relies on comparisons of ecosystem attributes between restored and reference marshes. Although this approach provides an objective basis for judging project success, inferences can be constrained if the high variability of natural marshes masks differences in sampled attributes between restored and reference sites. Furthermore, such assessments are usually focused on a small number of restoration projects in a local area, limiting the ability to address questions regarding the effectiveness of restoration within a broad region. We developed a hierarchical approach to evaluate the performance of tidal restorations at local and regional scales throughout the Gulf of Maine. The cornerstone of the approach is a standard protocol for monitoring restored and reference salt marshes throughout the region. The monitoring protocol was developed by consensus among nearly 50 restoration scientists and practitioners. The protocol is based on a suite of core structural measures that can be applied to any tidal restoration project. The protocol also includes additional functional measures for application to specific projects. Consistent use of the standard protocol to monitor local projects will enable pooling information for regional assessments. Ultimately, it will be possible to establish a range of reference conditions characterizing natural tidal wetlands in the region and to compare performance curves between populations of restored and reference marshes for assessing regional restoration effectiveness.  相似文献   

15.
Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering.  相似文献   

16.
Selected nitrogen and phosphorus pools in two freshwater tidal marsh ecosystems on the lower Connecticut River were measured relative to Phragmites, Typha and mixed native wetland plant cover types. For both the Chapman Pond Preserve and Chester Creek Marsh, significant differences were found between plant cover types in porewater ammonium and phosphate for some months during the 1998 growing season; porewater nitrate was always below the detection limit. At Chapman Pond, no significant differences were detected between Phragmites and Typha for plant tissue N concentrations. The standing stock of nitrogen was higher in Phragmites stands, however, owing to its greater aboveground biomass. No significant difference was found between plant cover types for total soil N at Chapman Pond, but KCl extractable ammonium was higher in the mixed cover type than Phragmites or Typha. The results of this study suggest that Phragmites is affecting nutrient pools in freshwater tidal marshes, a result that should be considered in future management design.  相似文献   

17.
Evaluation of Filters for Removal of Bacteriophages from Air   总被引:3,自引:3,他引:0       下载免费PDF全文
Glass wool, nonabsorbent cotton, fiberglass filter medium, and a commercial absolute filter were tested for effectiveness in removing aerosolized bacterial viruses under low flow rate (1 ft(3)/min) and high flow rate (10 to 25 ft(3)/min) air-flow conditions. Special equipment was designed for measurement of filter efficiencies under the two air-flow conditions. Under low air-flow rate test conditions, glass wool was only 98.543 to 99.83% efficient, whereas cotton (five layers), fiberglass medium (three layers), and the commercial absolute filter were at least 99.900, 99.999, and 99.999 efficient, respectively. Glass wool and cotton were not used under higher air-flow conditions because they were difficult to assemble in leak-tight filters. The commercial absolute filter and fiberglass medium (three layers) were at least 99.990 and 99.999% efficient, respectively, under the higher air flow conditions. A stainless-steel filter of simple design and fitted with three layers of fiberglass medium was found to be greater than 99.999% efficient in removing high concentrations (20,000 to 70,000 plaque-forming units per cubic foot) of aerosolized bacteriophages from air moving at a low flow rate (1 ft(3)/min). Use of this filter on pressure-vacuum tanks in the fermentation industry is suggested. Several other uses of such a filter are proposed.  相似文献   

18.
Although Phragmites has been an upper border tidal marsh species for thousands of years, it is only recently (within the last century or so) that the distribution of this plant within the coastal marsh community has become prominent. Prior to approximately 100 years ago, Phragmites was an upper border/brackish marsh co-dominant in many marsh systems. Occurrence of this species varied between associations of sedges, Typha, forbs and a variety of woody shrubs. Paleoreconstructions rarely show the presence of a Phragmites monoculture or early associations with salt marsh species. However, since the turn of this century (and perhaps as early as the middle of the last century) the distribution of Phragmites has changed substantially. Today, this plant often forms dense monocultures and is commonly found in association with Spartina grasses. The results of this paleoecological investigation show that the changes that have been observed in Phragmites communities during the last 100 years are not part of the long-term cycle of development in these systems and are new to the landscape.  相似文献   

19.
In this study, among a collection of heavy metals resistant endophytic bacterial strains isolated from aquatic hyperaccumulator plant (Eichhornia crassipes), one plant growth promoting endophytic bacteria (PGPE), SVUB4 was selected for its ability to utilize 1-aminocyclopropane-1-carboxylic acid (ACC) as the sole N source and accumulate different heavy metals. The SVUB4 strain was characterized as Enterobacter sp. on the basis of its 16S rDNA sequences. Assessment of the parameters of plant growth promotion revealed the intrinsic ability of the strain for the production of IAA, siderophore and solubilization of insoluble phosphate. Furthermore, plasmid DNA analysis of Enterobacter sp. strain SVUB4 indicated the presence of a single large plasmid element. The results of plasmid curing experiments demonstrated that the ability of this strain to grow in presence of Cd and Zn was encoded by the 98 kb plasmid, whereas the ability to grow in the presence of Pb appeared to be encoded by the chromosome. The Cd and Zn removal capacity of the respective metal sensitive strain (plasmidless) were about 36 and 45 μg/g-1 DW, respectively, while the removal capacity of the both metal by metal resistant strain (p SVUB4) showed a significantly higher Cd and Zn removal capacity of 153 and 228 μg/g?1 DW, respectively. However, both strains exhibited a similar pattern of Pb accumulation. The present observation also showed that for wild-type strain SVUB4 (pSVUB4), the overall level of IAA production in the absence and in the presence of Cd2+ or Zn2+was approximately the same. Nevertheless, strain SVUB4M in this respect appeared to be more sensitive to heavy metals: a noticeable decrease in IAA production was observed under the effect of both metals, especially with Cd2+.  相似文献   

20.
Soils from four estuaries of SW Iberian Peninsula, affected by anthropogenic influence (urban, industrial and agricultural activities), were analyzed for the occurrence of a variety of metals and trace elements including Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S and Zn. The soils presented very high levels of salinity (high concentrations of Na, K and Mg), organic matter and, consequently, of C and N concentrations. In contrast, very low values of CaCO3, Ca and P were found. In addition, it should be highlighted that in certain localities (Piedras 1 and 2 and Guadiana in Huelva, Spain, and Ria Formosa, Faro, Portugal) the concentrations of Pb, S and Zn were extremely high, reaching levels of pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号