首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Protein redox regulation plays important roles in many biological processes. Protein cysteine thiols are sensitive to redox changes and may function as redox switches, which turn signaling and metabolic pathways on or off to ensure speedy responses to environmental stimuli or stresses. Here we report a novel integrative proteomics method called cysTMTRAQ that combines two types of isobaric tags, cysteine tandem mass tags and isobaric tag for relative and absolute quantification, in one experiment. The method not only enables simultaneous analysis of cysteine redox changes and total protein level changes, but also allows the determination of bona fide redox modified cysteines in proteins through the correction of protein turnover. Overlooking the factor of protein-level changes in the course of protein posttranslational modification experiments could lead to misleading results. The capability to analyze protein posttranslational modification dynamics and protein-level changes in one experiment will advance proteomic studies in many areas of biology and medicine.Changes in the redox states of protein cysteine thiols serve as regulatory switches in diverse biological processes (1). The redox cycle is regulated by well-known factors such as the ferredoxin-thioredoxin and glutathione-glutaredoxin systems, which reduce oxidized cysteines. Other oxidoreductases and oxidants such as reactive oxygen species act primarily to oxidize cysteine thiol groups (2, 3). In order to map and quantify cysteine redox modifications on the proteome scale, several approaches and methods have been developed, mostly using thiol-specific reagents and isotope tags. Two-dimensional gel electrophoresis technology combined with fluorescent dye labeling (e.g. monobromobimane (4, 5) and cyanine dyes (6, 7)) and gel-free technology with isotope tagging (e.g. isotope-coded affinity tagging (68), cysTMT1 (9), and iTRAQ labeling of enriched cysteine-containing peptides (1014)) are often used to identify potential redox-sensitive cysteine residues and quantify redox changes.In addition to the well-known capabilities and limitations associated with two-dimensional gel electrophoresis–based and gel-free approaches (15), each method has its strengths and weaknesses in redox proteomics. For example, the two-dimensional gel electrophoresis methods allow the inspection of spot patterns related to redox and protein-level changes. However, spot-volume-based quantification becomes problematic, as each spot often contains more than one protein species from complex samples. In addition, the limited number of fluorescent reagents compromises multiplexing capability, and the use of cyanine dyes does not allow mapping of the modified cysteines (6, 7). Other thiol labeling approaches such as the use of N-ethylmaleimide, biotin-N-[6-(Biotinamido)hexyl]-3-(2-pyridyldithio) propionamide (16), and isotope-coded affinity tags allow specific enrichment of cysteine-containing peptides, mapping of cysteine modification sites, and duplex experiments in the case of isotope-coded affinity tags (6, 7). To enable multiplexing, 4- or 8-plex iTRAQ tags were recently used to label cysteine-containing peptides isolated from thiol-affinity chromatography (10, 11, 14, 16). Another multiplexing technology, cysTMT, was developed to specifically label cysteines with free thiol groups of proteins from six different samples (9). Although these multiplexing technologies have found utility, they do not address the issue of protein turnover in the course of experiments, and many researchers have overlooked this important factor that could lead to misleading results (8, 13, 14, 17). Only a small number of researchers have attempted to compare potential redox changes determined in proteomics experiments to total protein-level changes obtained from parallel or different studies (6, 7, 16). However, the success of this strategy is often low because many proteins quantified in redox experiments are either absent or not quantified with confidence in total proteomics experiments as a result of experimental variation and mass spectrometry stochastical sampling issues (18, 19).To overcome this challenge, we have developed a double-labeling strategy that uses iTRAQ and cysTMT in one experiment for the simultaneous determination of quantifiable cysteine redox changes and protein-level changes. This new strategy, named cysTMTRAQ, utilizes each of the tags for their specific chemical properties. cysTMT tags (m/z 126, 127, 128, 129, 130, and 131 for six samples) were used to label protein thiols responsive to a treatment, and iTRAQ tags (m/z 114, 115, 116, 117, 119, and 121 for six samples) were used to label the N termini of peptides for analysis of protein-level changes during the experiments. By taking advantage of the different mass tags and their labeling specificities, one can quantify changes in protein redox and total levels in the same experiment. As protein redox regulation is a ubiquitous process (1, 2, 12), the utility of this new integrative cysTMTRAQ method is expected to greatly advance redox proteomic studies in many fields of biology and medicine, and thus benefit a broad range of scientists.  相似文献   

3.
The purpose of this study was to generate a basis for the decision of what protein quantities are reliable and find a way for accurate and precise protein quantification. To investigate this we have used thousands of peptide measurements to estimate variance and bias for quantification by iTRAQ (isobaric tags for relative and absolute quantification) mass spectrometry in complex human samples. A549 cell lysate was mixed in the proportions 2:2:1:1:2:2:1:1, fractionated by high resolution isoelectric focusing and liquid chromatography and analyzed by three mass spectrometry platforms; LTQ Orbitrap Velos, 4800 MALDI-TOF/TOF and 6530 Q-TOF. We have investigated how variance and bias in the iTRAQ reporter ions data are affected by common experimental variables such as sample amount, sample fractionation, fragmentation energy, and instrument platform. Based on this, we have suggested a concept for experimental design and a methodology for protein quantification. By using duplicate samples in each run, each experiment is validated based on its internal experimental variation. The duplicates are used for calculating peptide weights, unique to the experiment, which is used in the protein quantification. By weighting the peptides depending on reporter ion intensity, we can decrease the relative error in quantification at the protein level and assign a total weight to each protein that reflects the protein quantitation confidence. We also demonstrate the usability of this methodology in a cancer cell line experiment as well as in a clinical data set of lung cancer tissue samples. In conclusion, we have in this study developed a methodology for improved protein quantification in shotgun proteomics and introduced a way to assess quantification for proteins with few peptides. The experimental design and developed algorithms decreased the relative protein quantification error in the analysis of complex biological samples.Recent developments in methods and instruments for mass spectrometry enable quantitative proteomics analysis of complex samples with good coverage (14). Several techniques for quantification by mass spectrometry exist, both using isotopic labeling and label free methods (5, 6). Quantification by isotopic labeling can be done on precursor ion level or by quantifying isobaric label fragments in fragment spectra. Isotope-coded affinity tag (7), isobaric tags for relative and absolute quantification (iTRAQ)1 (8), and stable isotope labeling by amino acids in cell culture (SILAC) (9) are among the most commonly used labeling methods based on stable isotopes. iTRAQ allows for simultaneous relative quantification of up to eight samples within a single run. Quantification by mass spectrometry is however a challenge, and several factors contribute to the uncertainty in the quantitative estimate; differences in labeling efficiency, protein digestion, precursor mixing, ion suppression, peak detection, data preprocessing, and data analysis (10). The quality of quantitation methods can be measured in terms of precision and accuracy. Precision is affected by random errors, that is, random fluctuations around the true value (variance). Lack of accuracy is caused by systematic errors, that is, differences between true and observed values (bias).Several studies have shown that iTRAQ labeling is associated with bias; fold changes are compressed toward one (1114). It has been suggested that this underestimation of fold change is caused by co-eluting peptides with similar m/z values that are isolated together, creating mixed iTRAQ intensities in complex samples (14). Concerning precision, iTRAQ data has been reported to exhibit variance heterogeneity. The coefficient of variance (CV) of the signal depends on the intensity, with larger CV for low intensity peaks (11, 12, 15, 16). Measurements of iTRAQ intensities for quantification are made in the MS/MS spectra of the peptides, and thereafter combined to calculate a summarized relative protein quantity. There are several different approaches for combining the iTRAQ peptide data to compute a reliable protein ratio. Methods to improve the protein quantification by addressing the variance heterogeneity have been based on excluding low intensity peptide data (17, 18), weighting the peptide data according to intensity (1821) or stabilizing the variance (12).Quantitative studies of complex human samples are subject to even more challenges related to large biological variation, large and unknown complexity of the human proteome and a large concentration range of proteins. This in turn results in many peptides and a large variety of peptides that can cause interference and related problems in the mass spectrometry analysis. In, for example, biomarker discovery research the goal is to measure quantitative changes or differences in protein levels between two or more clinical conditions. It is therefore crucial to achieve as accurate and precise quantitative information from the data as possible as well as to correctly estimate the limitations of the quantification. Setting adequate standards for quantitative proteomics analysis is hence essential for being able to detect relevant changes in protein abundance, select important proteins, and further use those proteins to interpret the biological and clinical meaning (10, 22). Selecting a protein as significant and taking it to further validation in other clinical material using complementary techniques is time consuming and costly (23). For successful use of iTRAQ labeling in biomarker discovery, and to avoid false discoveries, it is hence essential to assess the accuracy and precision of the methodology.A common approach to study variance and bias in mass spectrometry based protein quantification is to spike a set of standard proteins into a sample and then measure the CV and bias of the intensities of those peptides. Spike-in of proteins has the benefit of looking at a small controlled set of peptides and how they behave in the studied system. This strategy has been used in several of the previously mentioned papers that address iTRAQ quantification (1114). However, the number of data points studied may be unlikely to represent the complexity of a real biological sample, which often contains thousands of proteins (24). In the current study, all peptides detected in a complex human cell line sample (A549) are used to get an estimate of the quantitative accuracy and precision. This experimental setup is hence more similar to a real biomarker discovery study with high complex human proteome samples. The quality of the protein quantifications is compared among several different mass spectrometers in this work; also the influence of different loaded peptide amounts and the use of different methods for sample separation are examined. Factors such as variance and bias of peptide quantification by iTRAQ are systematically evaluated in those high complex samples. Further, methods for improving the protein quantification are investigated; by filtering on the peptide level to remove low quality intensities and by weighting the peptide values to account for the higher risk of errors at low intensities (20).We have described the factors contributing to bias and variance in protein quantification by iTRAQ labeling. This has generated guidelines for how to estimate the accuracy of protein quantities, which will be an essential tool in both biomarker discovery and studies of biological systems. Based on the results, we suggest an experimental design where each labeling set (e.g., iTRAQ) includes duplicate samples, and we describe how these duplicates are used for calculating peptide weights that can be used in addressing the accuracy of protein quantities. This novel approach is shown to improve protein quantification by iTRAQ in six data sets of A431 cell line samples treated with drug and a clinical data set of lung cancer tissue samples.  相似文献   

4.
5.
Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.Lysine acetylation (Kac)1 is a well conserved, reversible post-translational modification (PTM) involved in multiple cellular processes (1). Acetylation is regulated by two classes of enzymes: lysine acetyltransferases (KATs) and histone deacetylases (HDACs) (24). This modification was originally identified as a nuclear event on histone proteins and has been long appreciated for its role in epigenetic and DNA-dependent processes. With the help of a growing number of large-scale acetylation studies, it has become evident that lysine acetylation is ubiquitous, also occurring on cytoplasmic and mitochondrial proteins and has a role in signaling, metabolism, and immunity (1, 46). Therefore, the examination of lysine acetylation on nonhistone proteins has gained a prominent role in PTM analysis.To date, the identification of large numbers of acetylation sites has been challenging because of the substoichiometric nature of this modification (7, 8). Additionally, global acetylation is generally less abundant than phosphorylation and ubiquitylation (1). The introduction of antibodies specific for lysine acetylation has significantly improved the ability to enrich and identify thousands of sites (914). A landmark study by Choudhary et al. used anti-Kac antibodies to globally map 3600 lysine acetylation sites on 1750 proteins, thereby demonstrating the feasibility of profiling the acetylome (10). A more recent study by Lundby et al. investigated the function and distribution of acetylation sites in 16 different rat tissues, and identified, in aggregate, 15,474 acetylation sites from 4541 proteins (12).Although anti-acetyl lysine antibodies have been a breakthrough for globally mapping acetylation sites (912), it remains a challenge to identify large numbers of lysine acetylation sites from a single sample, as is now routinely possible for phosphorylation and ubiquitylation (13, 1518). To improve the depth-of-coverage in acetylation profiling experiments there is a clear need for (1) alternative anti-acetyl lysine antibodies with higher specificity, (2) optimized antibody usage parameters, and (3) robust proteomic workflows that permit low to moderate protein input. In this study, we describe a newly commercialized mixture of anti-Kac antibodies and detail a complete proteomic workflow for achieving unprecedented coverage of the acetylome from a single stable isotope labeling by amino acids in cell culture (SILAC) labeled sample as well as isobaric tags for relative and absolute quantitation (iTRAQ)- and tandem mass tag (TMT)-labeled samples.  相似文献   

6.
7.
8.
9.
10.
SPA2 encodes a yeast protein that is one of the first proteins to localize to sites of polarized growth, such as the shmoo tip and the incipient bud. The dynamics and requirements for Spa2p localization in living cells are examined using Spa2p green fluorescent protein fusions. Spa2p localizes to one edge of unbudded cells and subsequently is observable in the bud tip. Finally, during cytokinesis Spa2p is present as a ring at the mother–daughter bud neck. The bud emergence mutants bem1 and bem2 and mutants defective in the septins do not affect Spa2p localization to the bud tip. Strikingly, a small domain of Spa2p comprised of 150 amino acids is necessary and sufficient for localization to sites of polarized growth. This localization domain and the amino terminus of Spa2p are essential for its function in mating. Searching the yeast genome database revealed a previously uncharacterized protein which we name, Sph1p (Spa2p homolog), with significant homology to the localization domain and amino terminus of Spa2p. This protein also localizes to sites of polarized growth in budding and mating cells. SPH1, which is similar to SPA2, is required for bipolar budding and plays a role in shmoo formation. Overexpression of either Spa2p or Sph1p can block the localization of either protein fused to green fluorescent protein, suggesting that both Spa2p and Sph1p bind to and are localized by the same component. The identification of a 150–amino acid domain necessary and sufficient for localization of Spa2p to sites of polarized growth and the existence of this domain in another yeast protein Sph1p suggest that the early localization of these proteins may be mediated by a receptor that recognizes this small domain.Polarized cell growth and division are essential cellular processes that play a crucial role in the development of eukaryotic organisms. Cell fate can be determined by cell asymmetry during cell division (Horvitz and Herskowitz, 1992; Cohen and Hyman, 1994; Rhyu and Knoblich, 1995). Consequently, the molecules involved in the generation and maintenance of cell asymmetry are important in the process of cell fate determination. Polarized growth can occur in response to external signals such as growth towards a nutrient (Rodriguez-Boulan and Nelson, 1989; Eaton and Simons, 1995) or hormone (Jackson and Hartwell, 1990a , b ; Segall, 1993; Keynes and Cook, 1995) and in response to internal signals as in Caenorhabditis elegans (Goldstein et al., 1993; Kimble, 1994; Priess, 1994) and Drosophila melanogaster (St Johnston and Nusslein-Volhard, 1992; Anderson, 1995) early development. Saccharomyces cerevisiae undergo polarized growth towards an external cue during mating and to an internal cue during budding. Polarization towards a mating partner (shmoo formation) and towards a new bud site requires a number of proteins (Chenevert, 1994; Chant, 1996; Drubin and Nelson, 1996). Many of these proteins are necessary for both processes and are localized to sites of polarized growth, identified by the insertion of new cell wall material (Tkacz and Lampen, 1972; Farkas et al., 1974; Lew and Reed, 1993) to the shmoo tip, bud tip, and mother–daughter bud neck. In yeast, proteins localized to growth sites include cytoskeletal proteins (Adams and Pringle, 1984; Kilmartin and Adams, 1984; Ford, S.K., and J.R. Pringle. 1986. Yeast. 2:S114; Drubin et al., 1988; Snyder, 1989; Snyder et al., 1991; Amatruda and Cooper, 1992; Lew and Reed, 1993; Waddle et al., 1996), neck filament components (septins) (Byers and Goetsch, 1976; Kim et al., 1991; Ford and Pringle, 1991; Haarer and Pringle, 1987; Longtine et al., 1996), motor proteins (Lillie and Brown, 1994), G-proteins (Ziman, 1993; Yamochi et al., 1994; Qadota et al., 1996), and two membrane proteins (Halme et al., 1996; Roemer et al., 1996; Qadota et al., 1996). Septins, actin, and actin-associated proteins localize early in the cell cycle, before a bud or shmoo tip is recognizable. How this group of proteins is localized to and maintained at sites of cell growth remains unclear.Spa2p is one of the first proteins involved in bud formation to localize to the incipient bud site before a bud is recognizable (Snyder, 1989; Snyder et al., 1991; Chant, 1996). Spa2p has been localized to where a new bud will form at approximately the same time as actin patches concentrate at this region (Snyder et al., 1991). An understanding of how Spa2p localizes to incipient bud sites will shed light on the very early stages of cell polarization. Later in the cell cycle, Spa2p is also found at the mother–daughter bud neck in cells undergoing cytokinesis. Spa2p, a nonessential protein, has been shown to be involved in bud site selection (Snyder, 1989; Zahner et al., 1996), shmoo formation (Gehrung and Snyder, 1990), and mating (Gehrung and Snyder, 1990; Chenevert et al., 1994; Yorihuzi and Ohsumi, 1994; Dorer et al., 1995). Genetic studies also suggest that Spa2p has a role in cytokinesis (Flescher et al., 1993), yet little is known about how this protein is localized to sites of polarized growth.We have used Spa2p green fluorescent protein (GFP)1 fusions to investigate the early localization of Spa2p to sites of polarized growth in living cells. Our results demonstrate that a small domain of ∼150 amino acids of this large 1,466-residue protein is sufficient for targeting to sites of polarized growth and is necessary for Spa2p function. Furthermore, we have identified and characterized a novel yeast protein, Sph1p, which has homology to both the Spa2p amino terminus and the Spa2p localization domain. Sph1p localizes to similar regions of polarized growth and sph1 mutants have similar phenotypes as spa2 mutants.  相似文献   

11.
12.
13.
iTRAQ (isobaric tags for relative or absolute quantitation) is a mass spectrometry technology that allows quantitative comparison of protein abundance by measuring peak intensities of reporter ions released from iTRAQ-tagged peptides by fragmentation during MS/MS. However, current data analysis techniques for iTRAQ struggle to report reliable relative protein abundance estimates and suffer with problems of precision and accuracy. The precision of the data is affected by variance heterogeneity: low signal data have higher relative variability; however, low abundance peptides dominate data sets. Accuracy is compromised as ratios are compressed toward 1, leading to underestimation of the ratio. This study investigated both issues and proposed a methodology that combines the peptide measurements to give a robust protein estimate even when the data for the protein are sparse or at low intensity. Our data indicated that ratio compression arises from contamination during precursor ion selection, which occurs at a consistent proportion within an experiment and thus results in a linear relationship between expected and observed ratios. We proposed that a correction factor can be calculated from spiked proteins at known ratios. Then we demonstrated that variance heterogeneity is present in iTRAQ data sets irrespective of the analytical packages, LC-MS/MS instrumentation, and iTRAQ labeling kit (4-plex or 8-plex) used. We proposed using an additive-multiplicative error model for peak intensities in MS/MS quantitation and demonstrated that a variance-stabilizing normalization is able to address the error structure and stabilize the variance across the entire intensity range. The resulting uniform variance structure simplifies the downstream analysis. Heterogeneity of variance consistent with an additive-multiplicative model has been reported in other MS-based quantitation including fields outside of proteomics; consequently the variance-stabilizing normalization methodology has the potential to increase the capabilities of MS in quantitation across diverse areas of biology and chemistry.Different techniques are being used and developed in the field of proteomics to allow quantitative comparison of samples between one state and another. These can be divided into gel- (14) or mass spectrometry-based (58) techniques. Comparative studies have found that each technique has strengths and weaknesses and plays a complementary role in proteomics (9, 10). There is significant interest in stable isotope labeling strategies of proteins or peptides as with every measurement there is the potential to use an internal reference allowing relative quantitation comparison, which significantly increases sensitivity of detection of change in abundance. Isobaric labeling techniques such as tandem mass tags (11, 12) or isobaric tags for relative or absolute quantitation (iTRAQ)1 (13, 14) allow multiplexing of four, six and eight separately labeled samples within one experiment. In contrast to most other quantitative proteomics methods where precursor ion intensities are measured, here the measurement and ensuing quantitation of iTRAQ reporter ions occurs after fragmentation of the precursor ion. Differentially labeled peptides are selected in MS as a single mass precursor ion as the size difference of the tags is equalized by a balance group. The reporter ions are only liberated in MS/MS after the reporter ion and balance groups fragment from the labeled peptides during CID. iTRAQ has been applied to a wide range of biological applications from bacteria under nitrate stress (15) to mouse models of cerebellar dysfunction (16).For the majority of MS-based quantitation methods (including MS/MS-based methods like iTRAQ), the measurements are made at the peptide level and then combined to compute a summarized value for the protein from which they arose. An advantage is that the protein can be identified and quantified from data of multiple peptides often with multiple values per distinct peptide, thereby enhancing confidence in both identity and the abundance. However, the question arises of how to summarize the peptide readings to obtain an estimate of the protein ratio. This will involve some sort of averaging, and we need to consider the distribution of the data, in particular the following three aspects. (i) Are the data centered around a single mode (which would be related to the true protein quantitation), or are there phenomena that make them multimodal? (ii) Are the data approximately symmetric (non-skewed) around the mode? (iii) Are there outliers? In the case of multimodality, it is recommended that an effort be made to separate the various phenomena into their separate variables and to dissect the multimodality. Li et al. (17) developed ASAP ratio for ICAT data that includes a complex data combination strategy. Peptide abundance ratios are calculated by combining data from multiple fractions across MS runs and then averaging across peptides to give an abundance ratio for each parent protein. GPS Explorer, a software package developed for iTRAQ, assumes normality in the peptide ratio for a protein once an outlier filter is applied (18). The iTRAQ package ProQuant assumes that peptide ratio data for a protein follow a log-normal distribution (19). Averaging can be via mean (20), weighted average (21, 22), or weighted correlation (23). Some of these methods try to take into account the varying precision of the peptide measurements. There are many different ideas of how to process peptide data, but as yet no systematic study has been completed to guide analysis and ensure the methods being utilized are appropriate.The quality of a quantitation method can be considered in terms of precision, which refers to how well repeated measurements agree with each other, and accuracy, which refers to how much they on average deviate from the true value. Both of these types of variability are inherent to the measurement process. Precision is affected by random errors, non-reproducible and unpredictable fluctuations around the true value. (In)accuracy, by contrast, is caused by systematic biases that go consistently in the same direction. In iTRAQ, systematic biases can arise because of inconsistencies in iTRAQ labeling efficiency and protein digestion (22). Typically, ratiometric normalization has been used to address this tag bias where all peptide ratios are multiplied by a global normalization factor determined to center the ratio distribution on 1 (19, 22). Even after such normalization, concerns have been raised that iTRAQ has imperfect accuracy with ratios shrunken toward 1, and this underestimation has been reported across multiple MS platforms (2327). It has been suggested that this underestimation arises from co-eluting peptides with similar m/z values, which are co-selected during ion selection and co-fragmented during CID (23, 27). As the majority of these will be at a 1:1 ratio across the reporter ion tags (as required for normalization in iTRAQ experiments), they will contribute a background value equally to each of the iTRAQ reporter ion signals and diminish the computed ratios.With regard to random errors, iTRAQ data are seen to exhibit heterogeneity of variance; that is the variance of the signal depends on its mean. In particular, the coefficient of variation (CV) is higher in data from low intensity peaks than in data from high intensity peaks (16, 22, 23). This has also been observed in other MS-based quantitation techniques when quantifying from the MS signal (2830). Different approaches have been proposed to model the variance heterogeneity. Pavelka et al. (31) used a power law global error model in conjunction with quantitation data derived from spectral counts. Other authors have proposed that the higher CV at low signal arises from the majority of MS instrumentation measuring ion counts as whole numbers (32). Anderle et al. (28) described a two-component error model in which Poisson statistics of ion counts measured as whole numbers dominate at the low intensity end of the dynamic range and multiplicative effects dominate at the high intensity end and demonstrated its fit to label-free LC-MS quantitation data. Previously, in the 1990s, Rocke and Lorenzato (29) proposed a two-component additive-multiplicative error model in an environmental toxin monitoring study utilizing gas chromatography MS.How can the variance heterogeneity be addressed in the data analysis? Some of the current approaches include outlier removal (18, 25), weighted means (21, 22), inclusion filters (16, 22), logarithmic transformation (19), and weighted correlation analysis (23). Outlier removal methods, for example using Dixon''s test, assume a normal distribution for which there is little empirical basis. The inclusion filter method, where low intensity data are excluded, reduces the protein coverage considerably if the heterogeneity is to be significantly reduced. The weighted mean method results in higher intensity readings contributing more to the weighted mean than readings from low intensity readings. Filtering, outlier removal, and weighted methods are of limited use for peptides for which only a few low intensity readings were made; however, such cases typically dominate the data sets. Even with a logarithmic transformation, heterogeneity has been reported for iTRAQ data (16, 19, 22). Current methods struggle to address the issue and to maintain sensitivity.Here we investigate the data analysis issues that relate to precision and accuracy in quantitation and propose a robust methodology that is designed to make use of all data without ad hoc filtering rules. The additive-multiplicative model mentioned above motivates the so-called generalized logarithm transformation, a transformation that addresses heterogeneity of variance by approximately stabilizing the variance of the transformed signal across its whole dynamic range (33). Huber et al. (33) provided an open source software package, variance-stabilizing normalization (VSN), that determines the data-dependent transformation parameters. Here we report that the application of this transformation is beneficial for the analysis of iTRAQ data. We investigated the error structure of iTRAQ quantitation data using different peak identification and quantitation packages, LC-MS/MS data collection systems, and both the 4-plex and 8-plex iTRAQ systems. The usefulness of the VSN transformation to address heterogeneity of variance was demonstrated. Furthermore, we considered the correlations between multiple, peptide-level readings for the same protein and proposed a method to summarize them to a protein abundance estimate. We considered same-same comparisons to assess the magnitude of experimental variability and then used a set of complex biological samples whose biology has been well characterized to assess the power of the method to detect true differential abundance. We assessed the accuracy of the system with a four-protein mixture at known ratios spanning a -fold change expression range of 1–4. From this, we proposed a methodology to address the accuracy issues of iTRAQ.  相似文献   

14.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号